Easy Calculus

Calculus Level pending

0 π 2 tan ( θ 2 ) d θ \large \int_0^{\frac{\pi}{2}} ~~ \tan\left(\frac{\theta}{2}\right) ~ d\theta

If the value of above integral is in the form ln ( A ) \ln \left(A\right) , find the value of A A .

Notation: ln ( ) = log e ( ) \ln \left( \cdot \right) = \log_e (\cdot) denotes the natural logarithmic function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Sep 29, 2016

tan ( θ 2 ) d θ = 2 In( cos ( θ 2 ) ) 0 π 2 tan ( θ 2 ) d θ = 2 ln ( cos ( π 4 ) ) ( 2 In ( cos ( 0 ) ) ) = 2 In ( 1 2 ) + 2 In ( 1 ) = 2 In ( ( 2 ) 1 2 ) + 0 = 2 × 1 2 In ( 2 ) = In(2) A = 2 __________________________________________________________________ I = tan ( θ 2 ) d θ = ? I = sin ( θ 2 ) cos ( θ 2 ) d θ Let, x = θ 2 d x d θ = d d θ θ 2 d θ = 2 d x I = sin ( x ) cos ( x ) 2 d x = 2 sin ( x ) cos ( x ) d x Let, a = cos ( x ) d x = d a sin ( x ) I = 2 sin ( x ) a × d a sin ( x ) = 2 1 a d a = 2 In ( a ) = 2 In ( cos ( x ) ) tan ( θ 2 ) d θ = 2 In ( cos ( θ 2 ) ) \displaystyle \int\tan(\dfrac{\theta}{2}) d\theta = -2\text{In(}\cos(\dfrac{\theta}{2})) \\ \displaystyle \int_0^{\dfrac{\pi}{2}} \tan(\dfrac{\theta}{2}) \mathrm{d}\theta\\ \displaystyle = -2\text{ln}(\cos(\dfrac{\pi}{4})) - (- 2\text{In}(\cos(0)))\\ \displaystyle = -2\text{In}(\dfrac{1}{\sqrt[]{2}}) + 2\text{In}(1)\\ \displaystyle = -2\text{In}((2)^{\dfrac{-1}{2}}) + 0\\ \displaystyle = -2 \times \dfrac{-1}{2} \text{In}(2) \\ \displaystyle = \text{In(2)} \\ \displaystyle \boxed{\therefore A = 2}\\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \displaystyle I = \int\tan(\dfrac{\theta}{2}) d\theta = ? \\ \displaystyle I = \int\dfrac{\sin\left(\dfrac{\theta}{2}\right)}{\cos\left(\dfrac{\theta}{2}\right)} d\theta \\ \displaystyle \text{Let, } x = \dfrac{\theta}{2} \\ \displaystyle \dfrac{dx}{d\theta} = \dfrac{d}{d\theta} \dfrac{\theta}{2} \\ \displaystyle d\theta = 2dx \\ \displaystyle I = \int\dfrac{\sin(x)}{\cos(x)} ~ 2 ~ dx \\ \displaystyle = 2 \int\dfrac{\sin(x)}{\cos(x)} ~ dx \\ \displaystyle \text{Let, } a = \cos(x) \\ \displaystyle dx = -\dfrac{da}{\sin(x)} \\ \displaystyle I = 2 \int\dfrac{\sin(x)}{a} ~\times -\dfrac{da}{\sin(x)} \\ \displaystyle = -2 \int \dfrac{1}{a} ~ da \\ \displaystyle = -2 \text{In}(|a|)\\ \displaystyle = -2 \text{In}(|\cos(x)|) \\ \displaystyle \therefore \int\tan(\dfrac{\theta}{2}) d\theta = -2 \text{In}(|\cos(\dfrac{\theta}{2})|)

Vicky, natural log is actually L N LN and not I N IN . Just use \ln ln \ln will do. The wiki for natural logarithm is still empty, so don't use it yet. When you are using square brackets \ [ \ ], you don't need to use \displaystyle and \dfrac. LaTex will take care of the formating. I have edited the problem for you.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Thanks. yeah it's Ln. Lol

Viki Zeta - 4 years, 8 months ago
Chew-Seong Cheong
Sep 29, 2016

I = 0 π 2 tan π 2 d θ = 0 π 2 sin π 2 cos π 2 d θ Let x = cos π 2 , d x = 1 2 sin π 2 d θ = 2 1 1 2 d x x = 2 ln x 1 1 2 = 2 ( ln ( 1 2 ) ln 1 ) = ln 2 \begin{aligned} I & = \int_0^\frac \pi 2 \tan \frac \pi 2 \ d\theta \\ & = \int_0^\frac \pi 2 \frac {\sin \frac \pi 2}{\cos \frac \pi 2} \ d\theta & \small \color{#3D99F6}{\text{Let }x = \cos \frac \pi 2, \ dx = - \frac 12 \sin \frac \pi 2 \ d\theta} \\ & = - 2 \int^{\frac 1{\sqrt 2}}_1 \frac {dx}x \\ & = -2 \ln x \bigg|^{\frac 1{\sqrt 2}}_1 \\ & = -2 \left(\ln \left(\frac 1{\sqrt 2} \right) - \ln 1\right) \\ & = \ln 2 \end{aligned}

A = 2 \implies A = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...