Easy Calculus

Calculus Level 3

0 π 2 d x 1 + cot x = ? \large \int_0^{\frac\pi 2} \dfrac{dx}{1 + \cot x} = \, ?

π 4 \frac{\pi}{4} π \pi π 2 \frac{\pi}{2} 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 25, 2018

I = 0 π 2 1 1 + cot x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( 1 1 + cot x + 1 1 + tan x ) d x Since cot ( π 2 θ ) = tan θ = 1 2 0 π 2 ( tan 1 + tan x + 1 1 + tan x ) d x and cot θ = 1 tan θ = 1 2 0 π 2 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac 1{1+\cot x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac 1{1+\cot x} + \frac 1{1+\color{#3D99F6} \tan x} \right) dx & \small \color{#3D99F6} \text{Since }\cot \left(\frac \pi 2 - \theta\right) = \tan \theta \\ & = \frac 12 \int_0^\frac \pi 2 \left({\color{#3D99F6}\frac {\tan}{1+\tan x}} + \frac 1{1+\tan x} \right) dx & \small \color{#3D99F6} \text{and }\cot \theta = \frac 1{\tan \theta} \\ & = \frac 12 \int_0^\frac \pi 2 dx = \boxed {\dfrac \pi 4} \end{aligned}

Naren Bhandari
Dec 26, 2018

Since 0 x π / 2 , tan ( tan 1 x ) = x 0\leq x\leq \pi/2 \ , \tan(\tan^{-1}x)=x . Set x = tan 1 y d x = 1 1 + y 2 d y x=\tan^{-1} y \implies \,dx =\frac{1}{1+y^2} \,dy . So 0 1 2 π tan x 1 + tan x d x = 0 y ( 1 + y ) ( 1 + y 2 ) d y \int_{0}^{\frac{1}{2}\pi} \dfrac{\tan x}{1+\tan x}\,dx= \int_{0}^{\infty}\dfrac{y}{(1+y)(1+y^2)} \,dy Now 0 y ( 1 + y ) ( 1 + y 2 ) d y = π 2 0 1 ( 1 + y ) ( 1 + y 2 ) d y \begin{aligned} \int_{0}^{\infty}\dfrac{y}{(1+y)(1+y^2)} \,dy & =\dfrac{\pi}{2}-\int_{0}^{\infty}\dfrac{1}{(1+y)(1+y^2)} \,dy\end{aligned} Since 1 ( y + 1 ) ( y 2 + 1 ) = 1 2 ( 1 1 + y y y 2 + 1 + 1 y 2 + 1 ) \dfrac{1}{(y+1)(y^2+1)}=\dfrac{1}{2}\left(\dfrac{1}{1+y} -\dfrac{y}{y^2+1} +\dfrac{1}{y^2+1}\right) Thus integrating gives 2 ( y + 1 ) ( y 2 + 1 ) = ln ( y + 1 ) + tan 1 y ln ( y 2 + 1 ) 2 + C \int\dfrac{2}{(y+1)(y^2+1)} = \ln(y+1) +\tan^{-1}y-\dfrac{\ln(y^2+1)}{2}+C And hence 0 1 ( y + 1 ) ( y 2 + 1 ) d y = π 4 \int_{0}^{\infty} \dfrac{1}{(y+1)(y^2+1)}\,dy= \dfrac{\pi}{4} giving us I = π 2 π 4 = π 4 I = \dfrac{\pi}{2}-\dfrac{\pi}{4} =\dfrac{\pi}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...