If the value of above integral is of the form , where and are coprime positive integers, find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 . − J = ∫ − ∞ ∞ e − x 2 d x = ∫ − ∞ 0 e − x 2 d x + ∫ 0 ∞ e − x 2 d x = Due to f ( x ) = e − x 2 is and even function = 2 ∫ 0 ∞ e − x 2 d x = 2 I Now, we are going to make the change x = r cos θ , y = r sin θ ⇒ ∣ det J ( x , y ) ) ∣ = r where J ( x , y ) is the Jacobian matrix... I = ∫ 0 ∞ e − x 2 d x ⇒ I 2 = ∫ 0 ∞ ∫ 0 ∞ e − x 2 e − y 2 d y d x = ∫ 0 π / 2 ∫ 0 ∞ r e − r 2 d r d θ = ∫ 0 π / 2 2 1 d θ = 4 π ⇒ I = 2 π ⇒ J = π = π 1 / 2 ⇒ a + b = 1 + 2 = 3 2 . − Γ ( s ) = ∫ 0 ∞ t s − 1 e − t d t , . Make on I = ∫ 0 ∞ e − x 2 d x the change x 2 = t → d t = 2 x d x ⇒ I = ∫ 0 ∞ e − t 2 t 1 d t = 2 1 Γ [ 1 / 2 ] = 2 π ...
3 . −
Because of 1 and 2, Γ [ 1 / 2 ] = π = 2 I . The betta function B [ x , y ] = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t fulfills B [ 1 / 2 , 1 / 2 ] = Γ [ 1 ] Γ [ 1 / 2 ] ⋅ Γ [ 1 / 2 ] = 4 I 2 = Γ [ 1 / 2 ] 2 = π ⇒ I = 2 π B [ 1 / 2 , 1 / 2 ] = ∫ 0 1 t 1 − t 1 d t = Making the change t = sin 2 ( x ) → d t = 2 sin ( x ) cos ( x ) d x B [ 1 / 2 , 1 / 2 ] = ∫ 0 π / 2 2 d x = π . . .