Calculus 8 : Rational t'gos

Calculus Level 3

0 π 1 1 + sin x d x \large \int_{0}^{\pi} \dfrac{1}{1+\sin x} \, dx

If the value of above integral is of the form a b \large a^b , where a a and b b are coprime integers, find the value of a b \dfrac{a}{b} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 1 1 + sin x d x Since sin x is symmetrical on π 2 = 2 0 π 2 1 1 + sin x d x Let t = tan x 2 , d t = 1 + t 2 2 d x , sin x = 2 t 1 + t 2 = 2 0 π 2 1 1 + 2 t 1 + t 2 d x = 2 0 π 2 1 + t 2 1 + t 2 + 2 t d x = 4 0 π 4 1 ( t + 1 ) 2 d t = 4 t + 1 π 4 0 = 4 ( 1 1 2 ) = 2 \begin{aligned} I & = \int_0^\pi \frac 1{1+\sin x} dx & \small \color{#3D99F6}{\text{Since }\sin x \text{ is symmetrical on }\frac \pi 2} \\ & = \color{#3D99F6}{2} \int_0^{\color{#3D99F6}{\frac \pi 2}} \frac 1{1+\sin x} dx & \small \color{#3D99F6}{\text{Let }t = \tan \frac x2, \ dt = \frac {1+t^2}2 dx, \ \sin x = \frac {2t}{1+t^2}} \\ & = 2 \int_0^\frac \pi 2 \frac 1{1+\frac {2t}{1+t^2}} dx \\ & = 2 \int_0^\frac \pi 2 \frac {1+t^2}{1+t^2 + 2t} dx \\ & = 4 \int_0^\frac \pi 4 \frac 1{(t+1)^2} dt \\ & = \frac 4{t+1} \ \bigg|^0_\frac \pi 4 \\ & = 4\left(1-\frac 12 \right) = \boxed{2} \end{aligned}

Note that 1 1 + sin ( x ) 1 sin ( x ) 1 sin ( x ) = 1 sin ( x ) cos 2 ( x ) = sec 2 ( x ) sec ( x ) tan ( x ) \dfrac{1}{1 + \sin(x)} * \dfrac{1 - \sin(x)}{1 - \sin(x)} = \dfrac{1 - \sin(x)}{\cos^{2}(x)} = \sec^{2}(x) - \sec(x)\tan(x) ,

the integral of which is tan ( x ) sec ( x ) \tan(x) - \sec(x) , which when evaluated from x = 0 x = 0 to x = π x = \pi yields a value of

( tan ( π ) sec ( π ) ) ( tan ( 0 ) sec ( 0 ) ) = ( 0 ( 1 ) ) ( 0 1 ) = 2 = 2 1 a b = 2 1 = 2 (\tan(\pi) - \sec(\pi)) - (\tan(0) - \sec(0)) = (0 - (-1)) - (0 - 1) = 2 = 2^{1} \Longrightarrow \dfrac{a}{b} = \dfrac{2}{1} = \boxed{2} .

Did the same way ;).

Viki Zeta - 4 years, 8 months ago

Log in to reply

From your title I figured that's the approach you were looking for. :)

Brian Charlesworth - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...