Find the number of ordered quadruples of positive odd integers that satisfies the following equation
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x i = 2 a i + 1 where a i is nonnegative.
The equation simplifies to a 1 + a 2 + a 3 + a 4 = 4 7 for nonnegative integers. This is easy, because it is just stars and bars, sticks and stones, chopsticks and bowls, river stones and branches, 1 and 0 , etc.
Thus, the answer is ( 3 5 0 ) = 1 9 6 0 0