Easy cubes

How many positive cubes divide 3 ! × 5 ! × 7 ! 3!\times5!\times7! ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Decomposing the factors in primes:

3 ! = 1 2 3 3!=1\cdot 2\cdot 3

5 ! = 1 2 3 ( 2 2 ) 5 5!=1\cdot 2\cdot 3\cdot \left( 2\cdot 2 \right) \cdot 5

7 ! = 1 2 3 ( 2 2 ) 5 ( 2 3 ) 7 7!=1\cdot 2\cdot 3\cdot \left( 2\cdot 2 \right) \cdot 5\cdot \left( 2\cdot 3 \right) \cdot 7

Multiplying the factorials and grouping the terms to create perfect cubes:

1 3 2 3 3 3 2 3 2 2 5 2 3 1 7 1 { 1 }^{ 3 }\cdot { 2 }^{ 3 }\cdot { 3 }^{ 3 }\cdot { 2 }^{ 3 }\cdot { 2 }^{ 2 }\cdot { 5 }^{ 2 }\cdot { 3 }^{ 1 }\cdot { 7 }^{ 1 }

Combining the factors to create other perfect cubes we have:

2 3 3 3 = 6 2 { 2 }^{ 3 }\cdot { 3 }^{ 3 }={ 6 }^{ 2 }

2 3 2 3 = 4 3 { 2 }^{ 3 }\cdot { 2 }^{ 3 }={ 4 }^{ 3 }

2 3 2 3 3 3 = 12 3 { 2 }^{ 3 }\cdot { 2 }^{ 3 }\cdot { 3 }^{ 3 }={ 12 }^{ 3 }

2 3 1 3 = 2 3 { 2 }^{ 3 }\cdot { 1 }^{ 3 }={ 2 }^{ 3 }

3 3 1 3 = 2 3 { 3 }^{ 3 }\cdot { 1 }^{ 3 }={ 2 }^{ 3 }

1 1 3 = 1 3 1\cdot { 1 }^{ 3 }={ 1 }^{ 3 }

In total we have 6 \boxed{6} perfect cubes that divides 3 ! 5 ! 7 ! 3!\cdot 5!\cdot 7!

Good solution!

Paola Ramírez - 6 years, 4 months ago

Log in to reply

Thank you!

Victor Paes Plinio - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...