A number theory problem by Ojas Singh Malhi

Find 3 x 2 y 2 3x^2 y^2 if x x and y y are integers such that y 2 + 3 x 2 y 2 = 30 x 2 + 517 y^2 + 3x^2 y^2 = 30x^2 + 517 .


The answer is 588.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Aug 16, 2017

Relevant wiki: Quadratic Diophantine Equations - Solve by Simon's Favorite Factoring Trick

y 2 + 3 x 2 y 2 = 30 x 2 + 517 y 2 + 3 x 2 y 2 30 x 2 = 517 y 2 ( 3 x 2 + 1 ) 10 ( 3 x 2 + 1 ) = 517 10 ( y 2 10 ) ( 3 x 2 + 1 ) = 507 \displaystyle \begin{aligned} y^2 + 3x^2y^2 & = 30x^2 + 517 \\ y^2 + 3x^2y^2 - 30x^2 & = 517 \\ y^2\left(3x^2 + 1\right) - 10\left(3x^2 + 1\right) & = 517 - 10 \\ \left(y^2 - 10\right)\left(3x^2 + 1\right) & = 507 \end{aligned}

Now, 507 = 3 × 1 3 2 507 = 3 \times 13^2 , so we must have 3 x 2 + 1 { 1 , 3 , 13 , 39 , 169 , 507 } 3x^2 + 1 \in \{1, 3, 13, 39, 169, 507\} .

Factor Corresponding equation Solutions for x 2 1 3 x 2 + 1 = 1 0 3 3 x 2 + 1 = 3 2 3 13 3 x 2 + 1 = 13 4 39 3 x 2 + 1 = 39 38 3 169 3 x 2 + 1 = 169 56 507 3 x 2 + 1 = 507 506 3 \begin{array}{c|c|c} \text{Factor} & \text{Corresponding equation} & \text{Solutions for } x^2 \\ \hline 1 & 3x^2 + 1 = 1 & 0 \\ \hline 3 & 3x^2 + 1 = 3 & \frac 23 \\ \hline 13 & 3x^2 + 1 = 13 & 4 \\ \hline 39 & 3x^2 + 1 = 39 & \frac {38}{3} \\ \hline 169 & 3x^2 + 1 = 169 & 56 \\ \hline 507 & 3x^2 + 1 = 507 & \frac{506}{3} \\ \end{array}

We see that the only perfect squares are 0 0 and 4 4 . If 3 x 2 + 1 = 1 3x^2 + 1 = 1 , then y 2 10 = 507 y 2 = 517 y^2 - 10 = 507 \implies y^2 = 517 , which is not a perfect square (note that y y must be an integer). Therefore we have x 2 = 4 x^2 = 4 , and it follows that y 2 10 = 39 y 2 = 49 y^2 - 10 = 39 \implies y^2 = 49 . Our answer is 3 x 2 y 2 = 3 × 4 × 49 = 588 3x^2y^2 = 3 \times 4 \times 49 = \boxed{588} .

Note: Be careful with the implication signs. It is best to say that 3 x 2 + 1 { 1 , 3 , 13 , 39 , 169 , 507 } 3x^2 + 1 \in \{ 1, 3, 13, 39, 169, 507\} and work on from there. E.g. you missed out the x 2 = 0 x^2 = 0 case.

Calvin Lin Staff - 3 years, 9 months ago

Log in to reply

Edited - thank you Calvin!

Zach Abueg - 3 years, 9 months ago

Log in to reply

Great! This looks good now.

Calvin Lin Staff - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...