A Random Diophantine

Find the number of pairs of integer solutions ( x , y ) (x,y) satisfying x 3 y 3 = 91 \large\huge x^3-y^3=91 .

5 2 1 21 3 0 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bloons Qoth
Jul 15, 2016

The 4 solutions to this question are: ( 3 , 4 ) , ( 4 , 3 ) , ( 5 , 6 ) , ( 6 , 5 ) (3,-4), (4,-3), (-5,-6), (6,5)

First, the factor of x 3 y 3 {x^3-y^3} is ( x y ) ( x 2 + x y + y 2 ) {(x-y)(x^2+xy+y^2)}

Next, the factors of 91 91 are 1 91 91 1 13 7 7 13 \small\begin{aligned} & 1*91 \\ & 91*1 \\ & 13*7 \\ & 7*13 \end{aligned}

Now, assume { x y = 7 x 2 + x y + y 2 = 13 \begin{cases} x-y=7 \\ {x^2+xy+y^2}=13 \end{cases} and we will solve it as a system of equations.

x y = 7 y = 7 x y = x 7 \begin{aligned} x-y & =7 \\ -y & =7-x \\ y & =x-7 \end{aligned}

Then

13 = x 2 + x y + y 2 13 = x 2 + x ( x 7 ) + ( x 7 ) 2 13 = x 2 + x 2 7 x + x 2 14 x + 49 13 = 3 x 2 21 x + 49 0 = 3 x 2 21 x + 36 0 = x 2 7 x + 12 0 = ( x 3 ) ( x 4 ) x = 3 4 13={x^2+xy+y^2} \\ 13={x^2+x(x-7)+(x-7)^2} \\ 13={x^2+x^2-7x+x^2-14x+49} \\ 13={3x^2-21x+49} \\ 0={3x^2-21x+36} \\ 0={x^2-7x+12} \\ 0=(x-3)(x-4) \\ x=3 \cup\, 4

If we plug y y in, we should get ( 3 , 4 ) , ( 4 , 3 ) \color{#302B94}{(3,-4), (4,-3)}

WLOG, \text{WLOG,} with { x y = 1 x 2 + x y + y 2 = 91 , \begin{cases} x-y=1 \\ {x^2+xy+y^2}= 91 \end{cases}, we get ( 6 , 5 ) , ( 5 , 6 ) \color{#302B94}{(6,5), (-5,-6)}

For the other 2 equations, we will only get (ir)rational solutions for x x and y y .

Therefore, there are 4 \color{#EC7300}{\boxed{4}} solutions to this question. \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...