Easy enough

Calculus Level 2

a b e x a e b x x d x = ? \large \int_a^b \frac {e^\frac xa - e^\frac bx}x dx = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 11, 2019

I = a b e x a e b x x d x = a b e x a x d x a b e b x x d x Let u = x a d u = d x a = 1 b a e u u d u b a 1 e v v d v Let v = b x d v = b x 2 d x = 1 b a e x x d x 1 b a e x x d x Replace u and v with x = 0 \begin{aligned} I & = \int_a^b \frac {e^\frac xa - e^\frac bx}x dx \\ & = \blue{\int_a^b \frac {e^\frac xa}x dx} - \red{\int_a^b \frac {e^\frac bx}x dx} & \small \blue{\text{Let }u = \frac xa \implies du = - \frac {dx}a} \\ & = \blue{\int_1^\frac ba \frac {e^u}u du} - \red{\int_\frac ba^1 \frac {- e^v}v dv} & \small \red{\text{Let }v = \frac bx \implies dv = - \frac b{x^2}dx} \\ & = \int_1^\frac ba \frac {e^x}x dx - \int_1^\frac ba \frac {e^x}x dx & \small \blue{\text{Replace }u \text{ and }v \text{ with }x} \\ & = \boxed 0 \end{aligned}

Just substitute x=ab/t ....Good method never the less.

Yash Verma - 1 year, 7 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...