Exponential and Trigonometry in Integrand

Calculus Level 4

π π sin ( n x ) ( 1 + 2 x ) sin x d x = k π 32 \int_{-\pi}^{\pi}\frac{\sin(nx)}{(1+2^{x})\sin x} \ dx=\frac{k\pi}{32}

n n is a positive odd number. Find k 2 k^2 .


The answer is 1024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

U Z
Feb 27, 2015

I = π π sin ( n x ) ( 1 + 2 x ) sin x d x I= \displaystyle \int_{-\pi}^{\pi}\dfrac{\sin(nx)}{(1+2^{x})\sin x} dx

a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b - x) dx

π π 2 x sin ( n x ) ( 1 + 2 x ) sin x d x \displaystyle\int_{-\pi}^{\pi}\dfrac{2^x \sin (nx)}{(1+2^{x})\sin x} dx

2 I = π π sin ( n x ) [ 1 + 2 x ] ( 1 + 2 x ) sin x d x 2I = \displaystyle \int_{-\pi}^{\pi} \dfrac{\sin(nx)[1 + 2^x]}{(1+2^{x})\sin x} dx

2 I = 2 0 π sin ( n x ) sin x 2I = 2\displaystyle \int_{0}^{\pi} \dfrac{\sin (nx)}{\sin x}

n i s a n o d d n u m m b e r n = 2 k + 1 , k I + n~is~an~odd~nummber \implies n = 2k + 1 , k \in I^{+}

I = 0 π sin ( 2 k + 1 ) x sin x I = \displaystyle \int_{0}^{\pi} \dfrac{\sin (2k + 1)x}{\sin x}

I = 0 π sin 2 k x × cos x sin x + cos n x × sin x sin x d x I = \displaystyle \int_{0}^{\pi} \dfrac{ \sin 2kx \times \cos x}{\sin x} + \dfrac{ \cos nx \times \sin x}{ \sin x} dx

I = 0 π sin 2 k x × cos x sin x + cos n x d x I = \displaystyle \int_{0}^{\pi} \dfrac{\sin 2k x\times \cos x}{\sin x} + \cos nx dx


sin 2 k sin x = 2 ( cos x + cos 3 x + . . . . . + cos ( 2 k 1 ) x ) \dfrac{ \sin 2k }{\sin x} = 2( \cos x + \cos 3x + ..... + \cos (2k - 1)x)

Proof-

sin 2 k x = 2 sin x ( cos x + cos 3 x + . . . . . + cos ( 2 k 1 ) x ) \sin 2kx = 2\sin x(\cos x + \cos 3x + ..... + \cos (2k - 1)x)

sin 2 k x = sin 2 x + sin 4 x sin 2 x + sin 6 x sin 4 x + . . . . + sin 2 k x sin ( 2 k 2 ) x ) \sin 2kx = \sin 2x + \sin 4x - \sin 2x + \sin 6x - \sin 4x + .... + \sin 2kx - \sin(2k - 2)x)

sin 2 k x = sin 2 k x \sin 2kx = \sin 2kx


I = 0 π 2 cos x ( cos x + cos 3 x + . . . . . + cos ( 2 k 1 ) x ) + cos n x d x I = \displaystyle \int_{0}^{\pi} 2\cos x( \cos x + \cos 3x + ..... + \cos (2k - 1)x) + \cos nx dx

I = 0 π 1 + cos 2 x + cos 4 x + cos 2 x + . . . . + cos 2 k x + cos ( 2 k 2 ) x + ( cos n x ) d x I = \displaystyle \int_{0}^{\pi} 1 + \cos 2x + \cos 4x + \cos 2x + .... + \cos 2kx + \cos (2k - 2)x + (\cos nx) dx

I = π I = \pi ( [ sin n x n ] 0 π = 0 ) \left ( \left[ \dfrac{\sin nx}{n} \right]_{0}^{\pi} = 0\right )

@megh choksi

Nice solution , I had guessed it though :D

A Former Brilliant Member - 6 years, 3 months ago

nice and complete solution. can just put n=1(any odd number) to quickly get answer.

NILAY PANDE - 6 years, 1 month ago

perfect...

rajat kharbanda - 6 years, 1 month ago
D S
Jun 2, 2018

Just set n=1 and its trivial

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...