Easy Equations

Algebra Level 1

x = y 1 y + 1 \large{\color{#3D99F6}x = \sqrt\frac{\color{#D61F06}y - 1}{\color{#D61F06}y +1}}
Express y y in terms of x x .

y = 1 + x 1 x y=\frac{1+x}{1-x} y = 1 + x 2 1 x 2 y=\frac{1+x^2}{1-x^2} y = 1 x 1 + x y=\frac{1-x}{1+x} y = 1 x 2 1 + x 2 y=\frac{1-x^2}{1+x^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

x = y 1 y + 1 x 2 = y 1 y + 1 ( y + 1 ) x 2 = y 1 y x 2 + x 2 = y 1 y x 2 y = ( x 2 + 1 ) y ( x 2 1 ) = ( x 2 + 1 ) y = 1 1 x 2 + 1 1 x 2 y = x 2 + 1 1 x 2 \begin{aligned} x=\sqrt{\frac{y-1}{y+1}} &\Longleftrightarrow x^2 = \frac{y-1}{y+1}\\[1em] &\Longleftrightarrow (y+1)x^2 = y-1\\[1em] &\Longleftrightarrow yx^2+x^2=y-1\\[1em] &\Longleftrightarrow yx^2-y=-(x^2+1)\\[1em] &\Longleftrightarrow y(x^2-1)=-(x^2+1)\\[1em] &\Longleftrightarrow y = \frac{-1}{-1}\cdot \frac{x^2+1}{1-x^2}\\[1em] &\Longleftrightarrow y = \frac{x^2+1}{1-x^2} \end{aligned}

As @Kislay Raj said, Componendo et Divideno is the best approach to this problem.

x = y 1 y + 1 x 2 1 = y 1 y + 1 x 2 + 1 x 2 1 = y 1 + y + 1 y 1 y 1 y = 1 + x 2 1 x 2 x=\sqrt{\dfrac{y-1}{y+1}}\\ \implies \frac{x^2}{1}=\frac{y-1}{y+1}\\ \implies \frac{x^2+1}{x^2-1}=\frac{y-1+y+1}{y-1-y-1}\\ \implies \boxed{y=\dfrac{1+x^2}{1-x^2}}

Prasun Biswas - 6 years, 3 months ago

you could have applied Componendo & Dividendo to shorten the soln (just around 2 steps).

Kislay Raj - 6 years, 3 months ago

Log in to reply

yup i did it the same way

Nikhil Gupta - 6 years, 3 months ago

i dont understand 2nd last step?? :(

Ƨhahzaib ConfụƧxd - 5 years, 3 months ago
Hero Miles
Mar 7, 2015

x = y 1 y + 1 x 2 = y 1 y + 1 x 2 = y + 1 2 y + 1 x 2 = y + 1 y + 1 2 y + 1 x 2 = 1 2 y + 1 x 2 1 = 2 y + 1 2 y + 1 = 1 x 2 2 1 x 2 = y + 1 2 1 x 2 1 = y 2 1 x 2 1 x 2 1 x 2 = y 2 ( 1 x 2 ) 1 x 2 = y 1 + x 2 1 x 2 = y \begin{aligned}x &= \sqrt{\dfrac{y - 1}{y + 1}}\\\\x^2 &= \dfrac{y - 1}{y + 1}\\\\x^2&=\dfrac{y + 1 - 2}{y + 1}\\\\x^2 &= \dfrac{y + 1}{y + 1} - \dfrac{2}{y + 1}\\\\x^2&=1 - \dfrac{2}{y + 1}\\\\x^2 - 1 &=-\dfrac{2}{y + 1} \\\\\dfrac{2}{y + 1}&=1 - x^2\\\\\dfrac{2}{1 - x^2} &= y + 1\\\\\dfrac{2}{1 - x^2} - 1&= y \\\\\dfrac{2}{1 - x^2} - \dfrac{1 - x^2}{1 - x^2}&= y\\\\\dfrac{2 -(1 - x^2)}{1 - x^2}&= y\\\\\dfrac{1 + x^2}{1 - x^2}&= y\end{aligned}

Thats really nice

Sherif Mito - 5 years, 2 months ago
Gandoff Tan
Apr 15, 2019

x = y 1 y + 1 x 2 = y 1 y + 1 ( y + 1 ) x 2 = y 1 x 2 y + x 2 = y 1 y x 2 y = 1 + x 2 y ( 1 x 2 ) = 1 + x 2 y = 1 + x 2 1 x 2 \begin{aligned} x & = & \sqrt { \frac { y-1 }{ y+1 } } \\ { x }^{ 2 } & = & \frac { y-1 }{ y+1 } \\ (y+1){ x }^{ 2 } & = & y-1 \\ { x }^{ 2 }y+{ x }^{ 2 } & = & y-1 \\ y-{ x }^{ 2 }y & = & 1+{ x }^{ 2 } \\ y(1-{ x }^{ 2 }) & = & { 1+x }^{ 2 } \\ y & = & \boxed { \frac { 1+{ x }^{ 2 } }{ 1-{ x }^{ 2 } } } \end{aligned}

Betty BellaItalia
Apr 22, 2017

Shahriar Rizvi
Feb 16, 2017

First square both sides. Then the equation will be, x^2 = y - 1 / y + 1.

x^2 + 1 / x^2 - 1 = y - 1 + y + 1 / y - 1-y - 1. [Componendo - Dividendo].

y = 1 + x^2/1 - x^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...