Easy exponents #7

Algebra Level 1

4 x 1 + 4 x + 4 x + 1 = 84 \large { 4 }^{ x-1 }+{ 4 }^{ x }+{ 4 }^{ x+1 }=84

Find the value of x x satisfying the above equation.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ponhvoan Srey
Oct 10, 2015

Just factorize it:

4 x 1 + 4 x + 4 x + 1 = 84 4 x ( 1 4 + 1 + 4 ) = 84 4 x × ( 21 4 ) = 84 4 x = 16 x = 2 { 4 }^{ x-1 }+{ 4 }^{ x }+{ 4 }^{ x+1 }=84\\ \\ { 4 }^{ x }\left( \frac { 1 }{ 4 } +1+4 \right) =84\\ \\ { \quad \quad 4 }^{ x }\times \left( \frac { 21 }{ 4 } \right) =84\\ \\ \quad \quad \quad \quad \quad \quad { \quad 4 }^{ x }=16\\ \\ \quad \quad \quad \quad \quad \quad \Rightarrow \boxed { x=2 }

Ashish Menon
May 29, 2016

4 x 1 + 4 x × 4 x + 1 = 84 4 x ( 1 4 + 1 + 4 ) = 84 4 x × 21 4 = 84 4 x = 16 4 x = 4 2 x = 2 \begin{aligned} 4^{x - 1} + 4^x × 4^{x + 1} & = 84\\ 4^x\left(\dfrac{1}{4} + 1 + 4 \right) & = 84\\ 4^x × \dfrac{21}{4} & = 84\\ 4^x & = 16\\ 4^x & = 4^2\\ \therefore x & = \color{#69047E}{\boxed{2}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...