Cyclic points

Geometry Level 3

The four distinct points (2,3), (0,2), (4,5) and (0,t) are concyclic. What is the value of t ?


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Soumo Mukherjee
Jan 7, 2015

  • Let A ( 0 , 2 ) B ( 2 , 3 ) C ( 4 , 5 ) D ( 0 , t ) . \displaystyle A\equiv \left( 0,2 \right) \quad B\equiv \left( 2,3 \right) \quad C\equiv \left( 4,5 \right) \quad D\equiv \left( 0,t \right) .

  • Slope of the line A B = m 1 = 3 2 2 0 = 1 2 \displaystyle AB={ m }_{ 1 }=\cfrac { 3-2 }{ 2-0 } =\cfrac { 1 }{ 2 } . Slope of the line B C = m 2 = 5 3 4 2 = 1 \displaystyle BC={ m }_{ 2 }=\cfrac { 5-3 }{ 4-2 } =1 . If β \displaystyle \beta be the angle between A B \displaystyle AB and B C \displaystyle BC , then tan β = m 2 m 1 1 + m 2 m 1 = 1 1 2 1 + 1. 1 2 = 1 3 \displaystyle \tan { \beta } =\cfrac { { m }_{ 2 }-{ m }_{ 1 } }{ 1+{ m }_{ 2 }{ m }_{ 1 } } =\cfrac { 1-\cfrac { 1 }{ 2 } }{ 1+1.\cfrac { 1 }{ 2 } } =\cfrac { 1 }{ 3 } . Slope of the line C D = m 3 = 5 t 4 0 \displaystyle CD={ m }_{ 3 }=\cfrac { 5-t }{ 4-0 } .

  • Notice that D ( 0 , t ) \displaystyle D\equiv \left( 0,t \right) lies on Y-Axis. So, if γ \displaystyle \gamma be the angle of inclination of the line C D \displaystyle CD with the X-Axis then clearly tan γ = m 3 \displaystyle { \tan { \gamma } =m }_{ 3 } . If α \displaystyle \alpha be the angle between C D \displaystyle CD and A D \displaystyle AD , then: α + γ = 90 ° 1 tan ( α + γ ) = 0 tan α = 1 tan γ = 4 5 t \alpha +\gamma =90°\\ \Rightarrow \cfrac { 1 }{ \tan { \left( \alpha +\gamma \right) } } =0\\ \Rightarrow \tan { \alpha } =\cfrac { 1 }{ \tan { \gamma } } =\cfrac { 4 }{ 5-t } .

  • Given that the four points are concyclic, means α + β = 180 tan β = tan α 1 3 = 4 t 5 t = 17 \alpha +\beta =180\\ \Rightarrow \tan { \beta } =-\tan { \alpha } \\ \Rightarrow \cfrac { 1 }{ 3 } =\cfrac { 4 }{ t-5 } \\ \Rightarrow t=17 . Hence the answer.

It possibly should be written in original text t 2 t\ne 2

Ela Marinić-Kragić - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...