A geometry problem by Lee Dongheng

Geometry Level 2

The figure shows a square A B C D ABCD . E E and F F are selected on B C BC and C D CD respectively such that D A F = E A F \angle DAF=\angle EAF , A E = 202 AE=202 , B E = 116 BE=116 , find the length of D F DF .

Note : The figure is not drawn to scale.


The answer is 86.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lee Dongheng
Aug 8, 2017

Let D F = x DF=x ,

E C = A B 116 EC=AB-116 , C G = A E E C = 202 + 116 A B CG=AE-EC=202+116-AB

A D F G C F \triangle ADF \sim \triangle GCF ,

Therefore D F C F \frac{DF}{CF} = A D C G \frac{AD}{CG}

x A B x = A B 318 A B \frac{x}{AB-x}=\frac{AB}{318-AB}

318 x A B x = A B 2 A B x 318x-ABx=AB^{2}-ABx

318 x = 20 2 2 11 6 2 = ( 202 + 116 ) ( 202 116 ) 318x=202^{2}-116^{2}=(202+116)(202-116)

x = 86 \boxed{x=86}

Bonus question : Can you prove A E = B E + D F AE=BE+DF ?

I have proven that AE = BE + DF :) It's Included in my solution. Sorry if it's too long or convoluted. It's the only way I can see it. hahahaha

Emmanuel David - 3 years, 7 months ago
Emmanuel David
Oct 31, 2017

A D = A B = A E 2 + B E 2 = 20 2 2 + 11 6 2 = 27348 = 2 6837 AD = AB = \sqrt{AE ^2 + BE ^2} = \sqrt{202 ^2 + 116 ^2} = \sqrt{27348} = 2\sqrt{6837}

B A E = 90 2 D A F \angle BAE = 90 - 2 \angle DAF

A E B = 90 B A E = 90 ( 90 2 D A F ) = 2 D A F \angle AEB = 90 - \angle BAE = 90 - (90 - 2 \angle DAF) = 2 \angle DAF

cos A E B = cos 2 D A F = 116 202 = 58 101 \cos \angle AEB = \cos 2\angle DAF= \frac{116}{202} = \frac{58}{101}

2 D A F = arccos ( 58 101 ) 2\angle DAF = \arccos(\frac{58}{101})

D A F = 1 2 arccos ( 58 101 ) \angle DAF = \frac{1}{2} \arccos(\frac{58}{101})

tan D A F = D F 2 6837 \tan\angle DAF= \frac{DF}{2\sqrt{6837}}

D F = 2 6837 tan D A F DF = 2\sqrt{6837}\tan\angle DAF

D F = 2 6837 tan ( 1 2 arccos ( 58 101 ) ) = 86 DF = 2\sqrt{6837}\tan(\frac{1}{2} \arccos(\frac{58}{101})) = \boxed{86}

And;

To prove that A E = B E + D F AE = BE + DF

cos ( 2 D A F ) = B E A E B E = A E cos ( 2 D A F ) B E = A E ( cos 2 D A F sin 2 D A F ) \cos (2 \angle DAF) = \frac{BE}{AE} \Rightarrow BE = AE \cos (2\angle DAF) \Rightarrow BE = AE(\cos^2 \angle DAF - \sin^2 \angle DAF)

sin ( 2 D A F ) = A B A E A B = A E sin ( 2 D A F ) A B = 2 ( A E ) ( cos D A F ) ( sin D A F ) \sin (2 \angle DAF) = \frac{AB}{AE} \Rightarrow AB = AE \sin (2 \angle DAF) \Rightarrow AB = 2 (AE) (\cos \angle DAF)(\sin\angle DAF)

t a n D A F = D F A D = D F A B A B = D F tan D A F A B = D F cos D A F sin D A F tan \angle DAF = \frac{DF}{AD} = \frac{DF}{AB} \Rightarrow AB = \frac{DF}{\tan \angle DAF} \Rightarrow AB = \frac{DF \cos \angle DAF}{\sin \angle DAF}

2 ( A E ) ( cos D A F ) ( sin D A F ) = D F cos D A F sin D A F 2 (AE) (\cos \angle DAF)(\sin\angle DAF) = \frac{DF \cos \angle DAF}{\sin \angle DAF}

D F = 2 ( A E ) ( s i n 2 D A F ) DF = 2 (AE) (sin^2 \angle DAF)

B E + D F = A E ( cos 2 D A F sin 2 D A F ) + 2 ( A E ) ( sin 2 D A F ) BE + DF = AE(\cos^2 \angle DAF - \sin^2 \angle DAF) + 2 (AE) (\sin^2 \angle DAF)

B E + D F = A E ( ( cos 2 D A F sin 2 D A F ) + 2 ( sin 2 D A F ) ) BE + DF = AE ((\cos^2 \angle DAF - \sin^2 \angle DAF) + 2 (\sin^2 \angle DAF))

B E + D F = A E ( cos 2 D A F + sin 2 D A F ) BE + DF = AE (\cos^2 \angle DAF + \sin^2 \angle DAF)

B E + D F = A E ( 1 ) BE + DF = AE (1)

B E + D F = A E \boxed{BE + DF = AE}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...