Harmonic Limit

Calculus Level 3

Find the limit lim n k = n + 1 2 n 1 k \displaystyle \lim _{ n\rightarrow \infty }{ \displaystyle \sum _{ k=n+1 }^{ 2n }{ \frac { 1 }{ k } } }

ln2 1 infinity 1.75

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First solution (Simple)

lim n k = n + 1 2 n 1 k = lim n k = 1 n 1 n + k = lim n 1 n k = 1 n 1 1 + k n = 0 1 d x 1 + x = ln ( 1 + x ) 0 1 = ln 2 \displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\sum _{ k=n+1 }^{ 2n }{ \frac { 1 }{ k } } } \\ =\displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\sum _{ k=1 }^{ n }{ \frac { 1 }{ n+k } } } \\ =\displaystyle\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \displaystyle\sum _{ k=1 }^{ n }{ \frac { 1 }{ 1+\frac { k }{ n } } } } \\ =\displaystyle\int _{ 0 }^{ 1 }{ \frac { dx }{ 1+x } } \\ =\left. \ln { \left( 1+x \right) } \right| _0^1\\ =\ln { 2 }

Second solution (Elegant)

k = n + 1 2 n 1 k = k = 1 2 n 1 k k = 1 n 1 k = k = 1 2 n 1 k 2 k = 1 n 1 2 k = k = 1 2 n ( 1 ) k + 1 k lim n k = n + 1 2 n 1 k = lim n k = 1 2 n ( 1 ) k + 1 k = k = 1 ( 1 ) k + 1 k = ln 2 \displaystyle\sum _{ k=n+1 }^{ 2n }{ \frac { 1 }{ k } } \\ =\displaystyle\sum _{ k=1 }^{ 2n }{ \frac { 1 }{ k } } -\displaystyle\sum _{ k=1 }^{ n }{ \frac { 1 }{ k } } \\ =\displaystyle\sum _{ k=1 }^{ 2n }{ \frac { 1 }{ k } } -2\displaystyle\sum _{ k=1 }^{ n }{ \frac { 1 }{ 2k } } \\ =\displaystyle\sum _{ k=1 }^{ 2n }{ \frac { { \left( -1 \right) }^{ k+1 } }{ k } } \\ \therefore \displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\sum _{ k=n+1 }^{ 2n }{ \frac { 1 }{ k } } } \\ =\displaystyle\lim _{ n\rightarrow \infty }{ \displaystyle\sum _{ k=1 }^{ 2n }{ \frac { { \left( -1 \right) }^{ k+1 } }{ k } } } \\ =\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { \left( -1 \right) }^{ k+1 } }{ k } } \\ =\ln { 2 }

We can rewrite the summation as :-

1 n k = n + 1 2 n n k \frac{1}{n}\sum_{k=n+1}^{2n} \frac{n}{k}

We would now like to use Riemann Sums

The lower limit for integration would be

lim n n + 1 n = 1 \lim_{n\to\infty} \frac{n+1}{n} = 1

The upper limit of integration would be

lim n 2 n n = 2 \lim_{n\to\infty} \frac{2n}{n} = 2

So the given summation can be written as :-

1 2 1 x d x \int_{1}^{2} \frac{1}{x} dx

= ln ( 2 ) = \ln(2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...