Easy identity

Algebra Level 2

50 + 7 50 7 + 50 7 50 + 7 = ? \large \dfrac{\sqrt{50}+7}{\sqrt{50}-7}+\dfrac{\sqrt{50}-7}{\sqrt{50}+7} = \ ?

201 197 200 198 199

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Ian Carlo
Aug 4, 2015

What I did was set x = 50 x=\sqrt{50} and y = 7. y=7. Then:

x + y x y + x y x + y = 2 x 2 + 2 y 2 x 2 y 2 = 2 ( 50 ) 2 + 2 ( 7 ) 2 ( 50 ) 2 ( 7 ) 2 = 100 + 98 1 = 198 \begin{aligned} & \frac{x+y}{x-y} + \frac{x-y}{x+y} \\ &= \frac{2x^2+2y^2}{x^2-y^2} \\ &= \frac{2(\sqrt{50})^2 + 2(7)^2}{(\sqrt{50})^2-(7)^2} \\ &= \frac{100+98}{1} \\ &=\boxed{198} \end{aligned}

Moderator note:

Yes. Applying a simple substitution makes it simpler. Here's an upvote!

I love your approach!

Rico Lee - 4 years, 11 months ago

Very simplistic. Possibly the best solution among all of these!

Raakin Kabir - 4 years, 9 months ago

I love this technique!

Maygrens Macatangay - 4 years, 6 months ago

I don't get the second step, I'm lost, please help :-(

Simon Cochrane - 4 years, 4 months ago

Log in to reply

Its similar to how you make the denominators the same, when adding fractions

e.g (1/(x +1)) + (4/(x+6)) = 1(x + 6) + 4(x + 1) (x + 1)(x + 6)

= x + 6 + 4x + 4 (x + 1)(x + 6)

= 5x + 10
(x + 1)(x + 6)

By the way this was not my working t was by this site https://revisionmaths.com/gcse-maths-revision/algebra/algebraic-fractions that fully explained to me how to these kind of questions and apply them on other topic. Hope this helps :)

Matthew Tioxon - 4 years, 3 months ago

I understand the concept of substituting the question into an x and y formula, each with their own value, I think that it is by far the best method

Matthew Tioxon - 4 years, 3 months ago

We have:

50 + 7 50 7 = ( 50 + 7 ) 2 ( 50 7 ) ( 50 + 7 ) = 99 + 14 50 50 7 50 + 7 = ( 50 7 ) 2 ( 50 7 ) ( 50 + 7 ) = 99 14 50 \dfrac{\sqrt{50}+7}{\sqrt{50}-7}=\dfrac{(\sqrt{50}+7)^2}{(\sqrt{50}-7)(\sqrt{50}+7)}=99+14\sqrt{50}\\ \dfrac{\sqrt{50}-7}{\sqrt{50}+7}=\dfrac{(\sqrt{50}-7)^2}{(\sqrt{50}-7)(\sqrt{50}+7)}=99-14\sqrt{50}

So, 50 + 7 50 7 + 50 7 50 + 7 = 198 \dfrac{\sqrt{50}+7}{\sqrt{50}-7}+\dfrac{\sqrt{50}-7}{\sqrt{50}+7}=\boxed{198}

sqrt(50)-7 = x;

sqrt(50)+7 =y;

=> xy = 1; x+y = 2sqrt(50)

=> x/y + y/x = (x^2 + y^2)/xy

= [(x+y)^2-2xy]/xy

= 200-2=198

Khang Hoàng Hồng - 5 years, 10 months ago

What is myophia ?

Arjun Suryakant Shahi - 5 years, 10 months ago

Log in to reply

Nearsightedness is called myophia

Deepak Shakya - 5 years, 10 months ago

Log in to reply

Yes but the spelling is: myopia

Fabiø Marinacci - 5 years, 5 months ago

So you x 2 x^{2} the numerator? Then use the identity ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^{2} = a^{2}+2ab+b^{2} and a 2 b 2 = ( a b ) ( a + b ) a^{2}-b^{2}=(a-b)(a+b)

Adam Phúc Nguyễn - 5 years, 10 months ago
Sit Yew
Jun 29, 2016

let v= 50 + 7 \sqrt{50}+7 , u= 50 7 \sqrt{50}-7 and uv=50-49=1 then,

v u \frac{v}{u} + u v \frac{u}{v}

= v 2 + u 2 u v \frac{v^{2}+u^2}{uv}

= ( v + u ) 2 2 u v u v \frac{(v+u)^2-2uv}{uv}

= ( 2 50 ) 2 (2\sqrt{50})^{2} -2

=4x50-2

=198

Creative solution

suzan khach - 3 years, 9 months ago
Gia Hoàng Phạm
Sep 22, 2018

50 + 7 50 7 + 50 7 50 + 7 = ( 50 + 7 ) 2 + ( 50 7 ) 2 50 49 = 2 × 50 + 2 × 49 = 2 ( 50 + 49 ) = 2 × 99 = 198 \frac{\sqrt{50}+7}{\sqrt{50}-7}+\frac{\sqrt{50}-7}{\sqrt{50}+7}=\frac{(\sqrt{50}+7)^2+(\sqrt{50}-7)^2}{50-49}=2 \times 50+2 \times 49=2(50+49)=2 \times 99=\boxed{\large{198}}

I do this, yeah more complicated but not use too much Logic

50 + 7 50 7 + 50 7 50 + 7 = ( 50 + 7 ) 2 + ( 50 7 ) 2 50 2 7 2 = 50 + 49 + 14 50 + 50 + 49 14 50 50 49 = 99 × 2 1 = 198 \frac { \sqrt { 50 } +7 }{ \sqrt { 50 } -7 } +\frac { \sqrt { 50 } -7 }{ \sqrt { 50 } +7 } \\ =\frac { { (\sqrt { 50 } +7) }^{ 2 }\quad +\quad { (\sqrt { 50 } -7) }^{ 2 } }{ { \sqrt { 50 } }^{ 2 }-{ 7 }^{ 2 } } \\ =\frac { 50+49+14\sqrt { 50 } +50+49-14\sqrt { 50 } }{ 50-49 } \\ =\frac { 99\times 2 }{ 1 } =198

pretty simple!

Matthew Tioxon - 4 years, 3 months ago

I too done the same

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...