1 + 2 2 3 + 2 2 3 3 + 2 3 4 3 + … = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes, that's what i thought . Great work . Upvoted . : )
Same method!
n = 1 ∑ ∞ 2 n − 1 n 3 = d x 3 d 3 n = 1 ∑ ∞ 2 n − 1 e n x ∣ ∣ ∣ ∣ x = 0
= 2 d x 3 d 3 n = 1 ∑ ∞ ( 2 e x ) n ∣ ∣ ∣ ∣ x = 0 = 2 d x 3 d 3 2 − e x e x ∣ ∣ ∣ ∣ x = 0
= ( 2 − e x ) 4 4 e 3 x + 3 2 e 2 x + 1 6 e x ∣ ∣ ∣ ∣ x = 0
= ( 2 − 1 ) 4 4 + 3 2 + 1 6 = 5 2 .
How did you get the first step, please explain. I found answer by brute force.
Log in to reply
The first step is really just using the fact that e 0 = 1 .
n = 1 ∑ ∞ 2 n − 1 n 3 = n = 1 ∑ ∞ 2 n − 1 n 3 e 0
= n = 1 ∑ ∞ 2 n − 1 n 3 e n x ∣ ∣ ∣ ∣ x = 0 = d x 3 d 3 n = 1 ∑ ∞ 2 n − 1 e n x ∣ ∣ ∣ ∣ x = 0 .
Great! Good work, thanks for the beautiful solution.
( 1 − x ) − 1 Differentiating ⇒ x ( 1 − x ) − 2 Differentiating again ⇒ x ( 2 x ( 1 − x ) − 3 + ( 1 − x ) − 2 ) Differentiating ⇒ 4 x ( 1 − x ) − 3 + 6 x 2 ( 1 − x ) − 4 \nonumber + ( 1 − x ) − 2 + 2 x ( 1 − x ) − 3 4 x ( 1 − x ) − 3 + 6 x 2 ( 1 − x ) − 4 \nonumber + ( 1 − x ) − 2 + 2 x ( 1 − x ) − 3 = 1 + x + x 2 + x 3 + ⋯ = x + 2 x 2 + 3 x 3 + 4 x 4 + ⋯ = x + 2 2 x 2 + 3 2 x 3 + 4 2 x 4 + ⋯ = 2 x 2 ( 1 − x ) − 3 + x ( 1 − x ) − 2 = 1 + 2 3 x + 3 3 x 2 + 4 3 x 3 + ⋯ = ( 1 − x ) 4 4 x ( 1 − x ) + 6 x 2 + ( 1 − x ) 2 + 2 x ( 1 − x ) = ( 1 − x ) 4 x 2 + 4 x + 1
Substituting x = 0 . 5
( 1 − x ) 4 x 2 + 4 x + 1 = ( 4 1 + 3 ) × 1 6
∴ The sum = 5 2
A similar solution has been posted above , Anyway Nice work ! : )
Poly logarithm makes it easy!!!
Problem Loading...
Note Loading...
Set Loading...
We know for ∣ x ∣ < 1
n = 1 ∑ ∞ x n = 1 − x 1
on differentiating with respect to x
n = 1 ∑ ∞ n x n − 1 = ( 1 − x ) 2 1
n = 1 ∑ ∞ n x n = ( 1 − x ) 2 x
on differentiating again and then multiplying with x we get
n = 1 ∑ ∞ n 2 x n = ( 1 − x ) 3 x + x 2
differentiating again
n = 1 ∑ ∞ n 3 x n − 1 = ( 1 − x ) 6 ( 1 − x ) 3 ( 1 + 2 x ) + 3 ( x + x 2 ) ( 1 − x ) 2
substitute x = 2 1
we get 5 2