Do you know it?

Calculus Level 4

1 + 2 3 2 + 3 3 2 2 + 4 3 2 3 + = ? \large1+\frac{2^{3}}{2}+\frac{3^{3}}{2^{2}}+\frac{4^{3}}{2^3}+ \ldots = \ ?

This problem is a part of the set Summing Sums


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tanishq Varshney
Aug 15, 2015

We know for x < 1 |x|<1

n = 1 x n = 1 1 x \large{\displaystyle \sum_{n=1}^{\infty} x^n=\frac{1}{1-x}}

on differentiating with respect to x

n = 1 n x n 1 = 1 ( 1 x ) 2 \large{\displaystyle \sum_{n=1}^{\infty} nx^{n-1}=\frac{1}{(1-x)^2}}

n = 1 n x n = x ( 1 x ) 2 \large{\displaystyle \sum_{n=1}^{\infty} nx^n=\frac{x}{(1-x)^2}}

on differentiating again and then multiplying with x x we get

n = 1 n 2 x n = x + x 2 ( 1 x ) 3 \large{\displaystyle \sum_{n=1}^{\infty} n^2 x^{n}=\frac{x+x^2}{(1-x)^3}}

differentiating again

n = 1 n 3 x n 1 = ( 1 x ) 3 ( 1 + 2 x ) + 3 ( x + x 2 ) ( 1 x ) 2 ( 1 x ) 6 \large{\displaystyle \sum_{n=1}^{\infty} n^3 x^{n-1}=\frac{(1-x)^3(1+2x)+3(x+x^2)(1-x)^2}{(1-x)^6}}

substitute x = 1 2 x=\frac{1}{2}

we get 52 \large{\boxed{52}}

Yes, that's what i thought . Great work . Upvoted . : ) :)

Keshav Tiwari - 5 years, 10 months ago

Same method!

Kishore S. Shenoy - 5 years, 9 months ago
Maggie Miller
Aug 13, 2015

n = 1 n 3 2 n 1 = d 3 d x 3 n = 1 e n x 2 n 1 x = 0 \displaystyle\sum_{n=1}^{\infty}\frac{n^3}{2^{n-1}}=\frac{d^3}{dx^3}\sum_{n=1}^{\infty}\frac{e^{nx}}{2^{n-1}}\bigg|_{x=0}

= 2 d 3 d x 3 n = 1 ( e x 2 ) n x = 0 = 2 d 3 d x 3 e x 2 e x x = 0 \displaystyle=2\frac{d^3}{dx^3}\sum_{n=1}^{\infty}\left(\frac{e^x}{2}\right)^n\bigg|_{x=0}=2\frac{d^3}{dx^3}\frac{e^x}{2-e^x}\bigg|_{x=0}

= 4 e 3 x + 32 e 2 x + 16 e x ( 2 e x ) 4 x = 0 \displaystyle=\frac{4e^{3x}+32e^{2x}+16e^x}{(2-e^x)^4}\bigg|_{x=0}

= 4 + 32 + 16 ( 2 1 ) 4 = 52 \displaystyle=\frac{4+32+16}{(2-1)^4}=\boxed{52} .

How did you get the first step, please explain. I found answer by brute force.

Shib Shankar Sikder - 5 years, 10 months ago

Log in to reply

The first step is really just using the fact that e 0 = 1 e^0=1 .

n = 1 n 3 2 n 1 = n = 1 n 3 e 0 2 n 1 \displaystyle\sum_{n=1}^{\infty}\frac{n^3}{2^{n-1}}=\sum_{n=1}^{\infty}\frac{n^3e^0}{2^{n-1}}

= n = 1 n 3 e n x 2 n 1 x = 0 = d 3 d x 3 n = 1 e n x 2 n 1 x = 0 \displaystyle=\sum_{n=1}^{\infty}\frac{n^3e^{nx}}{2^{n-1}}\bigg|_{x=0}=\frac{d^3}{dx^3}\sum_{n=1}^{\infty}\frac{e^{nx}}{2^{n-1}}\bigg|_{x=0} .

Maggie Miller - 5 years, 10 months ago

Log in to reply

Great, that was clever.

Shib Shankar Sikder - 5 years, 10 months ago

Great! Good work, thanks for the beautiful solution.

Kishore S. Shenoy - 5 years, 9 months ago
Kishore S. Shenoy
Aug 22, 2015

( 1 x ) 1 = 1 + x + x 2 + x 3 + Differentiating x ( 1 x ) 2 = x + 2 x 2 + 3 x 3 + 4 x 4 + Differentiating again x ( 2 x ( 1 x ) 3 + ( 1 x ) 2 ) = x + 2 2 x 2 + 3 2 x 3 + 4 2 x 4 + = 2 x 2 ( 1 x ) 3 + x ( 1 x ) 2 Differentiating 4 x ( 1 x ) 3 + 6 x 2 ( 1 x ) 4 \nonumber + ( 1 x ) 2 + 2 x ( 1 x ) 3 = 1 + 2 3 x + 3 3 x 2 + 4 3 x 3 + 4 x ( 1 x ) 3 + 6 x 2 ( 1 x ) 4 \nonumber + ( 1 x ) 2 + 2 x ( 1 x ) 3 = 4 x ( 1 x ) + 6 x 2 + ( 1 x ) 2 + 2 x ( 1 x ) ( 1 x ) 4 = x 2 + 4 x + 1 ( 1 x ) 4 \displaystyle \begin{aligned} (1-x)^{-1} &= 1 + x + x^2 + x^3 + \cdots\\ \text{Differentiating }\Rightarrow x(1-x)^{-2} &= x + 2x^2 + 3x^3 + 4x^4 + \cdots\\ \small\text{Differentiating again}\\ \normalsize\Rightarrow x \left(2x(1-x)^{-3} + (1-x)^{-2} \right) &= x + 2^2 x^2 + 3^2 x^3 + 4^2 x^4 + \cdots\\ &=2 x^2(1-x)^{-3} + x(1-x)^{-2} \\ \text{Differentiating } \\ \Rightarrow 4x(1-x)^{-3} + 6x^2(1-x)^{-4} \nonumber \\ + (1-x)^{-2} + 2x(1-x)^{-3} &= 1 + 2^3x + 3^3x^2 + 4^3x^3 + \cdots\\\\ 4x(1-x)^{-3} + 6x^2(1-x)^{-4} \nonumber \\ + (1-x)^{-2} + 2x(1-x)^{-3} &=\frac{4x(1-x) + 6x^2 + (1-x)^2 + 2x(1-x)}{(1-x)^4}\\ &=\frac{x^2+4x+1}{(1-x)^4}\end{aligned}

Substituting x = 0.5 x = 0.5

x 2 + 4 x + 1 ( 1 x ) 4 = ( 1 4 + 3 ) × 16 \frac{x^2+4x+1}{(1-x)^4} = \left(\frac{1}{4} + 3\right) \times 16

The sum = 52 \boxed{\therefore \text{The sum } = 52}

A similar solution has been posted above , Anyway Nice work ! : ) :)

Keshav Tiwari - 5 years, 9 months ago

Poly logarithm makes it easy!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...