Easy inequality 2

Algebra Level 3

a b + c + b c + d + c d + a + d a + b \dfrac{a}{b+c}+ \dfrac{b}{c+d} +\dfrac{c}{d+a}+\dfrac{d}{a+b}

If a , b , c a,b,c and d d are non-negative real numbers, then find the minimum value of the above expression.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Mar 16, 2016

This is Nesbitt inequality for 4 variables. Call the expression A

1

We called B = a a + b + b b + c + c c + d + d d + a B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a} C = c b + c + d c + d + a d + a + b a + b C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b} Now by AM-GM we get A + B = a + b b + c + b + c c + d + c + d d + a + d + a a + b 4 A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\geq 4 Since a , b , c , d a,b,c,d are non-negatives, we have A + C = a + c b + c + b + d c + d + a + c d + a + b + d a + b + a + c c + b + a + c a + d + b + d c + d + b + d a + b 4 ( a + c ) a + b + c + d + 4 ( b + d ) a + b + c + d = 4 A+C=\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{a+c}{d+a}+\frac{b+d}{a+b}+\frac{a+c}{c+b}+\frac{a+c}{a+d}+\frac{b+d}{c+d}+\frac{b+d}{a+b}\geq \frac{4(a+c)}{a+b+c+d}+\frac{4(b+d)}{a+b+c+d}=4 Finally 2 A + B + C 8 A 2 2A+B+C\geq 8 \Rightarrow A\geq 2 The equality holds when a = b = c = d a=b=c=d

2

Since the first solution is too complicated, here's an another solution. We called G = a ( b + c ) + b ( c + d ) + c ( a + d ) + d ( a + b ) = ( a + b ) ( c + d ) + ( a + d ) ( b + c ) G=a(b+c)+b(c+d)+c(a+d)+d(a+b)=(a+b)(c+d)+(a+d)(b+c) Now applying Cauchy-Schwarz inequality we get A . G ( a + b + c + d ) 2 A.G\geq (a+b+c+d)^2 Clearly see that G ( a + b + c + d ) 2 2 G\leq \frac{(a+b+c+d)^2}{2} by AM-GM A 2 \therefore A\geq 2 The equality holds when a = b = c = d a=b=c=d

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...