Easy inequality

Algebra Level 3

a b + c + b c + a + c a + b \large \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}

If a , b a,b and c c are non-negative real numbers and the minimum value of the above expression is in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nihar Mahajan
Mar 16, 2016

a b + c + b a + c + c a + b = a 2 a b + a c + b 2 a b + b c + c 2 b c + a c \dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b} = \dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{bc+ac}

Using Titu's Lemma ,

a 2 a b + a c + b 2 a b + b c + c 2 b c + a c ( a + b + c ) 2 2 ( a b + b c + a c ) 3 2 \dfrac{a^2}{ab+ac}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{bc+ac} \geq \dfrac{(a+b+c)^2}{2(ab+bc+ac)} \geq \boxed{\dfrac{3}{2}}

Since ( a + b + c ) 2 3 ( a b + b c + a c ) (a+b+c)^2 \geq 3(ab+bc+ac) .


Proof for: ( a + b + c ) 2 3 ( a b + b c + a c ) (a+b+c)^2 \geq 3(ab+bc+ac) .

The above inequality is equivalent to a 2 + b 2 + c 2 a b + b c + c a a^2 + b^2 + c^2 \ge ab + bc + ca which can be easily established by trivial inequality 1 2 [ ( a b ) 2 + ( b c ) 2 + ( a c ) 2 ] 0 \frac{1}{2}[(a - b)^2 + (b - c)^2 + (a - c)^2] \ge 0 .

Moderator note:

When applying Titu's lemma, it helps to ensure that the numerator is a perfect square.

Rishabh Jain
Mar 16, 2016

T = a b + c + b c + a + c a + b \large\mathfrak{T}= \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} = 1 2 ( 2 a b + c + 2 b c + a + 2 c a + b ) =\dfrac{1}{\color{#3D99F6}{2}}\left(\dfrac{\color{#3D99F6}{2}a}{b+c}+\dfrac{\color{#3D99F6}{2}b}{c+a}+\dfrac{\color{#3D99F6}{2}c}{a+b}\right) = 1 2 ( 1 + 2 a b + c + 1 + 2 b c + a + 1 + 2 c a + b 3 ) =\dfrac 12\left(\color{#D61F06}{1+}\dfrac{2a}{b+c}+\color{#D61F06}{1+}\dfrac{2b}{c+a}+\color{#D61F06}{1+}\dfrac{2c}{a+b} \color{#D61F06}{-3}\right) = 1 2 ( a + b b + c + a + c b + c + b + c c + a + b + a c + a + a + c a + b + b + c a + b ) Applying A M G M 3 2 =\dfrac 12\underbrace{\left(\dfrac{a+b}{b+c}+\dfrac{a+c}{b+c}+\dfrac{b+c}{c+a}+\dfrac{b+a}{c+a}+\dfrac{a+c}{a+b}+\dfrac{b+c}{a+b}\right)}_{\color{#456461}{\text{Applying }AM\geq GM}}-\dfrac 32 T 1 2 ( 6 ) 3 2 = 3 2 \large\mathfrak{T}\geq \dfrac 12\left(6\right)-\dfrac{3}{2}=\dfrac 32 2 + 3 = 5 \Huge\therefore 2+3=\color{#456461}{\boxed{\color{#EC7300}{\boxed{\color{#0C6AC7}{5}}}}} N O T E : For Equality a = b = c 0 \boxed{\color{forestgreen}{\mathbf{NOTE:-}\\ \text{For Equality }a=b=c\neq 0}}

I suppose there is a typo in 3rd step.

Akshat Sharda - 5 years, 3 months ago

Log in to reply

Right... Edited.....

Rishabh Jain - 5 years, 3 months ago
Akshat Sharda
Mar 16, 2016

Solution by only using AM-GM inequality,

S = a b + c + b c + a + c a + b A = b b + c + c c + a + a a + b B = c b + c + a c + a + b a + b A + B = 3 S + A = a + b b + c + b + c c + a + c + a a + b 3 S + B = a + c b + c + b + a c + a + c + b a + b 3 A + B + 2 S 6 S 3 2 3 + 2 = 5 \begin{aligned} S & = \frac{a}{b+c}+ \frac{b}{c+a}+ \frac{c}{a+b} \\ A & = \frac{b}{b+c}+ \frac{c}{c+a}+ \frac{a}{a+b} \\ B & = \frac{c}{b+c}+ \frac{a}{c+a}+ \frac{b}{a+b} \\ \therefore A+B &=3 \\ S+A &= \frac{a+b}{b+c}+ \frac{b+c}{c+a}+ \frac{c+a}{a+b} ≥ 3 \\ S+B &= \frac{a+c}{b+c}+ \frac{b+a}{c+a}+ \frac{c+b}{a+b} ≥ 3 \\ A+B+2S & \geq 6\Rightarrow S \geq \frac{3}{2} \\ \Rightarrow 3+2 & = \boxed{5} \end{aligned}

Moderator note:

Nice approach taken here :)

Mohammed Imran
Apr 3, 2020

Here's my solution:

Let's normalize by assuming a + b + c = 1 a+b+c=1 . The above expression reduces to c y c a 1 a \sum_{cyc} \frac{a}{1-a} now, let f ( x ) = x 1 x f(x)=\frac{x}{1-x} . Since f ( x ) f(x) is a convex function, by Jensen's Inequality, we have f ( a + b + c 3 ) f ( a ) + f ( b ) + f ( c ) 3 f(\frac{a+b+c}{3}) \leq \frac{f(a)+f(b)+f(c)}{3} so, we result f ( a ) + f ( b ) + f ( c ) 3 2 f(a)+f(b)+f(c) \leq \frac{3}{2} . So, 3 2 = a b \frac{3}{2}=\frac{a}{b} and hence, the value of a + b a+b is 3 + 2 = 5 3+2=\boxed{5}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...