An algebra problem by Viki Zeta

Algebra Level 3

True or False?

2 100 + 3 100 < 4 100 2^{100} + 3^{100} < 4^{100}

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the quotient, Q = 2 100 + 3 100 4 100 Q = \dfrac {2^{100}+3^{100}}{4^{100}} . If Q > 1 Q > 1 , then 2 100 + 3 100 > 4 100 2^{100}+3^{100} > 4^{100} . If Q < 1 Q < 1 , then 2 100 + 3 100 < 4 100 2^{100}+3^{100} < 4^{100} .

Q = 2 100 + 3 100 4 100 = ( 2 4 ) 100 + ( 3 4 ) 100 = ( 1 2 ) 100 + ( 3 4 ) 100 \begin{aligned} Q & = \frac {2^{100}+3^{100}}{4^{100}} = \left(\frac 24\right)^{100} + \left(\frac 34\right)^{100} = \left(\frac 12\right)^{100} + \left(\frac 34\right)^{100} \end{aligned}

Since ( 1 2 ) 100 < ( 1 2 ) 2 \left(\dfrac 12\right)^{100} < \left(\dfrac 12\right)^2 and ( 3 4 ) 100 < ( 3 4 ) 2 \left(\dfrac 34\right)^{100} < \left(\dfrac 34\right)^2 , then:

Q < ( 1 2 ) 2 + ( 3 4 ) 2 = 0.25 + 0.5625 = 0.8125 < 1 \begin{aligned} Q & < \left(\dfrac 12\right)^2 + \left(\dfrac 34\right)^2 = 0.25 + 0.5625 = 0.8125 < 1 \end{aligned}

Therefore, the answer is True \boxed{\text{True}} .

Viki Zeta
Sep 2, 2016

100 < 200 2 100 < 2 200 2 100 < 4 100 ... 1 3 < 4 3 100 < 4 100 ... 2 from 1 and 2 2 100 + 3 100 4 100 2 100 + 3 100 < 4 100 100 < 200 \\ 2^{100} < 2^{200} \\ 2^{100} < 4^{100} \text{ ... } \fbox{ 1 } \\ 3 < 4 \\ 3^{100} < 4^{100} \text{ ... } \fbox{ 2 } \\ \text{from } \fbox{ 1 } \text{ and } \fbox{ 2 } \\ 2^{100} + 3^{100} \le 4^{100} \\ \implies 2^{100} + 3^{100} < 4^{100}

@Vicky Vignesh Please correct your erroneous notion. If 2<4 and 3<4, it does not mean that 2+3<4.

Rajen Kapur - 4 years, 9 months ago

Log in to reply

a < c ; b < c then a + b c , That depends on a, b. 1 < 2 , 2 < 3 1 + 2 3 ; 1 < 10 , 2 < 10 1 + 2 10 a < c; b < c \text{ then } a + b \le c \text{, That depends on a, b.} \\ 1 < 2, 2 < 3 \implies 1 + 2 \le 3; 1 < 10, 2 <10 \implies 1 + 2 \le 10

Viki Zeta - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...