A calculus problem by A Former Brilliant Member

Calculus Level 3

Let I 1 = 0 1 e x 1 + x d x \displaystyle I_1 = \int _0^1 \frac {e^x}{1+ x } dx and I 2 = 0 1 x 2 e x 3 ( 2 x 3 ) d x \displaystyle { I }_{ 2 }= \int _{ 0 }^{ 1 }{ \frac { { x }^{ 2 } }{ { e }^{ { x }^{ 3 } }\left( { 2 }-{ x }^{ 3 } \right) } } dx .

What is I 1 I 2 \dfrac { { I }_{ 1 } }{ { I }_{ 2 } } ?


The answer is 8.15484548537.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 26, 2018

I 2 = 0 1 x 2 e x 3 ( 2 x 3 ) d x = 0 1 x 2 e x 3 ( 2 x 3 ) d x Let u = 1 x 3 d u = 3 x 2 d x = 1 3 1 0 e u 1 1 + u d u = 1 3 e 0 1 e u 1 + u d u = 1 3 e I 1 \begin{aligned} I_2 & = \int_0^1 \frac {x^2}{e^{x^3}(2-x^3)} dx \\ & = \int_0^1 \frac {x^2e^{-x^3}}{(2-x^3)} dx & \small \color{#3D99F6} \text{Let }u = 1 - x^3 \implies du = -3x^2 \ dx \\ & = - \frac 13 \int_1^0 \frac {e^{u-1}}{1+u} du \\ & = \frac 1{3e} \int_0^1 \frac {e^u}{1+u} du \\ & = \frac 1{3e} I_1 \end{aligned}

Therefore, I 1 I 2 = 3 e 8.155 \dfrac {I_1}{I_2} = 3e \approx \boxed{8.155} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...