Integration

Calculus Level 4

Evaluate the following integral 0 π / 4 e tan θ ( sin θ cos θ ) 2 d θ . \int_0^{\pi/4} e^{\tan \theta} \left(\sin \theta-\cos \theta\right)^2~\text d \theta. Input your answer up to three decimal places.


The answer is 0.359141.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Robur 131
Oct 2, 2014

I am writing θ \theta as x x .

e tan x ( sin x cos x ) 2 = e tan x ( 1 2 sin x cos x ) = e tan x sec 2 x cos 2 x 2 sin x cos x . e^{\tan x} (\sin x -\cos x)^2 = e^{\tan x} (1-2 \sin x \cos x) =e^{\tan x} \sec^2 x \cdot \cos^2 x - 2 \sin x \cos x.

Now if a integral is given in the form e x ( f ( x ) + f ( x ) ) e^x (f(x) + f'(x)) we can write the result as e x f ( x ) + C . e^x f(x) +C.

So e tan x sec 2 x cos 2 x 2 sin x cos x = e tan x cos 2 x + C . \int e^{\tan x} \sec^2 x \cdot \cos^2 x - 2 \sin x \cos x= e^{\tan x} \cos^2 x +C.

Now if we input the values π / 4 \pi/4 and 0 0 we get

e tan ( π / 4 ) cos 2 ( π / 4 ) e tan 0 cos 2 0 = e 1 1 2 1 1 = e 2 1 = 0.359141 ( Answer ) . e^{\tan(\pi/4)} \cos^2 (\pi/4) - e^{\tan 0} \cos^2 0 = e^1 \cdot \dfrac{1}{2} - 1\cdot 1= \dfrac{e}{2} - 1=0.359141 ~(\text{Answer}).

you should prove the relation used.

Hasan Kassim - 6 years, 8 months ago

Ya ! actually i used the same concept as you mentioned but i seriously don't understand the way you presented it here.. could you please be a little elaborative .? Please be gentle. - ALIEN

Anurag Pandey - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...