⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ a + b + c = 1 6 a 2 + b 2 + c 2 = 9 0 a 3 + b 3 + c 3 = 5 3 2
If a , b and c satisfy the system of equations above, find a 4 + b 4 + c 4 .
You may use a calculator at the end. So best of luck!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( a + b + c ) 2 = ( a 2 + b 2 + c 2 ) + 2 × ( a b + b c + c a ) .
Let us substitute a + b + c = 1 6 and a 2 + b 2 + c 2 = 9 0 in the following equation and after that we get:
a b + b c + c a = 8 3 . . . ( ∗ )
( a + b + c ) × ( a 2 + b 2 + c 2 ) = ( a 3 + b 3 + c 3 ) + ( c a 2 + c b 2 + c 2 a + c 2 b + a 2 b + b 2 a )
After substituting the values we get: c a 2 + c b 2 + c 2 a + c 2 b + a 2 b + b 2 a = 9 0 8 . . . ( ∗ ∗ )
( a + b + c ) × ( a 2 + b 2 + c 2 ) = ( a 3 + b 3 + c 3 ) + 3 × ( c a 2 + c b 2 + c 2 a + c 2 b + a 2 b + b 2 a ) + 6 a b c .
After substituting the values including ** we get: a b c = 1 4 0 . . . ( ∗ ∗ ∗ )
( a + b + c ) × ( a 3 + b 3 + c 3 ) = ( a 4 + b 4 + c 4 ) + a b × ( a 2 + b 2 ) + c a × ( a 2 + c 2 ) + b c × ( b 2 + c 2 ) = ( a 4 + b 4 + c 4 ) + a b × ( 9 0 − c 2 ) + c a × ( 9 0 − b 2 ) + b c × ( 9 0 − a 2 ) = ( a 4 + b 4 + c 4 ) + 9 0 × ( a b + b c + c a ) − a b c × ( a + b + c )
Let us substitute * and * * and the values given in the question in the equation above and we're done: a 4 + b 4 + c 4 = 3 2 8 2 .
We can solve the problem using Newton's sums method. Let P n = a n + b n + c n , S 1 = a + b + c = 1 6 , S 2 = a b + b c + c a and S 3 = a b c . Then, we have:
P 2 a 2 + b 2 + c 2 9 0 ⟹ S 2 P 3 a 3 + b 3 + c 3 5 3 2 ⟹ S 3 ⟹ P 4 a 4 + b 4 + c 4 = P 1 S 1 − 2 S 2 = ( a + b + c ) ( a + b + c ) − 2 S 2 = 1 6 2 − 2 S 2 = 8 3 = P 2 S 1 − P 1 S 2 + 3 S 3 = ( 9 0 ) ( 1 6 ) − ( 1 6 ) ( 8 3 ) + 3 S 3 = 1 1 2 + 3 S 3 = 1 4 0 = P 3 S 1 − P 2 S 2 + P 1 S 3 = ( 5 3 2 ) ( 1 6 ) − ( 9 0 ) ( 8 3 ) + ( 1 6 ) ( 1 4 0 ) = 3 2 8 2
Problem Loading...
Note Loading...
Set Loading...
Use Newton's Sums.
Let a 3 = 1
S 1 + a 2 = 0 ⇒ a 2 = − 1 6
S 2 + a 2 S 1 + 2 a 1 = 0 ⇒ a 1 = 8 3
S 3 + a 2 S 2 + a 1 S 1 + 3 a 0 = 0 ⇒ a 0 = − 1 4 0
S 4 + a 2 S 3 + a 1 S 2 + a 0 S 1 = 0 ⇒ S 4 = 3 2 8 2
Note: