Manipulative limit

Calculus Level 3

lim x 0 ( e x 2 cos ( 5 x ) x sin ( x ) ) \large \displaystyle\lim_{x\to0} \left( \dfrac{e^{x^2}-\sqrt{\cos{(5x)}}}{x\sin{(x)}}\right)

If the limit above is equal to a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim x 0 ( e x 2 1 + 1 cos 5 x x sin x ) = lim x 0 ( e x 2 1 x sin x ) + lim x 0 ( 1 cos 5 x x sin x ) L= \displaystyle\lim_{x\to0} \left( \frac{e^{x^2}-1+1-\sqrt{\cos{5x}}}{x\sin{x}}\right)=\displaystyle\lim_{x\to0} \left( \frac{e^{x^2}-1}{x\sin{x}}\right)+\displaystyle\lim_{x\to0} \left( \frac{1-\sqrt{\cos{5x}}}{x\sin{x}}\right)

L = lim x 0 ( e x 2 1 x 2 sin x x ) + lim x 0 ( 1 cos 5 x x sin x 1 + cos 5 x 1 + cos 5 x ) L=\displaystyle\lim_{x\to0} \left( \frac{e^{x^2}-1}{x^2\frac{\sin{x}}{x}}\right)+\displaystyle\lim_{x\to0} \left( \frac{1-\sqrt{\cos{5x}}}{x\sin{x}}\color{#D61F06}{\frac{1+\sqrt{\cos{5x}}}{1+\sqrt{\cos{5x}}}}\right)

L = lim x 0 ( e x 2 1 x 2 x sin x ) + lim x 0 ( 25 1 cos 5 x ( 5 x ) 2 x sin x 1 1 + cos 5 x ) = 1 1 + 25 1 2 1 1 2 = 29 4 L=\displaystyle\lim_{x\to0} \left( \frac{e^{x^2}-1}{x^2}\frac{x}{\sin{x}}\right)+\displaystyle\lim_{x\to0} \left( 25\frac{1-\cos{5x}}{(5x)^2}\frac{x}{\sin{x}}\frac{1}{1+\sqrt{\cos{5x}}}\right)=1\cdot1+25\cdot\frac{1}{2}\cdot1\cdot\frac{1}{2}=\frac{29}{4}

Prasad Mahadik
Nov 9, 2015

It's much more easier if binomial expansion to (cos5x)^.5 is applied for 1-25x^2/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...