This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
bhai, wo ek activation energy ka numerical aata hai board me , uska ek tarika hota hai thuje pta hai kya yaar? waise toh ppr me nikalne ni wala log or calculations bhut hoti hai usme :{
Log in to reply
Arrhenius equation mein log le le . fir compare kar le Frequency factor aur Activation energy is value aa jaaegi
Log in to reply
nhi bhai wo bhut bdi calculations aati hai phir anti log lena pedta h uski ek trick bi hoti h. mai ek Q dikhata hu thuje thik ?
bhai hogi tyari ?
First I am going to expand this expression to lose the square root, doing that by using the identity ( a − b ) ( a + b ) = a 2 − b 2 :
x → ∞ lim ( 3 x 3 + 3 x 2 − x 2 − 2 x ) = x → ∞ lim ( { 3 x 3 + 3 x 2 − x 2 − 2 x } 3 x 3 + 3 x 2 + x 2 − 2 x 3 x 3 + 3 x 2 + x 2 − 2 x )
After multiplying, we get the following expression:
x → ∞ lim ( 3 x 3 + 3 x 2 + x 2 − 2 x 3 ( x 3 + 3 x 2 ) 2 − x 2 − 2 x )
Now I am going to expand again, this time to lose the 3rd root, doing that by using the identity ( a − b ) ( a 2 + a b + b 2 ) = a 3 − b 3 :
x → ∞ lim ( 3 x 3 + 3 x 2 + x 2 − 2 x 3 ( x 3 + 3 x 2 ) 2 − x 2 − 2 x 3 ( x 3 + 3 x 2 ) 4 + ( x 2 − 2 x ) 3 ( x 3 + 3 x 2 ) 2 + ( x 2 − 2 x ) 2 3 ( x 3 + 3 x 2 ) 4 + ( x 2 − 2 x ) 3 ( x 3 + 3 x 2 ) 2 + ( x 2 − 2 x ) 2 )
After expanding we get:
x → ∞ lim ( ( 3 ( x 3 + 3 x 2 ) 4 + ( x 2 − 2 x ) 3 ( x 3 + 3 x 2 ) 2 + ( x 2 − 2 x ) 2 ) ( 3 x 3 + 3 x 2 + x 2 − 2 x ) ( x 3 + 3 x 2 ) 2 − ( x 2 − 2 x ) 3 )
Now by expanding the numerator of this fraction, and dividing (and multiplying) the denominator with x 5 , we get
x → ∞ lim ⎝ ⎛ x 5 ( 3 ( 1 + x 3 ) 4 + ( 1 − x 2 ) 3 ( 1 + x 3 ) 2 + ( 1 − x 2 ) 2 ) ( 3 1 + x 3 + 1 − x 2 ) 1 2 x 5 − 3 x 4 + 8 x 3 ⎠ ⎞
Now by dividing(and multiplying) the nominator with x 5 we get:
x → ∞ lim ⎝ ⎛ x 5 ( 3 ( 1 + x 3 ) 4 + ( 1 − x 2 ) 3 ( 1 + x 3 ) 2 + ( 1 − x 2 ) 2 ) ( 3 1 + x 3 + 1 − x 2 ) x 5 ( 1 2 − x 3 + x 2 8 ) ⎠ ⎞
And finally, by using the limits lim x → ∞ x 1 = 0 and lim x → ∞ x 2 1 = 0 we get:
x → ∞ lim ⎝ ⎛ ( 3 ( 1 + x 3 ) 4 + ( 1 − x 2 ) 3 ( 1 + x 3 ) 2 + ( 1 − x 2 ) 2 ) ( 3 1 + x 3 + 1 − x 2 ) ( 1 2 − x 3 + x 2 8 ) ⎠ ⎞ = ( 1 + 1 + 1 ) ( 1 + 1 ) 1 2 = 6 1 2
x → ∞ lim ( 3 x 3 + 3 x 2 − x 2 − 2 x ) = 2
Faster approach: Use y = 1/x and binomial approximation: (1+x)^n approx 1 + nx
Log in to reply
It can be done without the substitution: x → ∞ lim ( \leftroot − 2 \uproot 2 3 x 3 + 3 x 2 − \leftroot − 2 \uproot 2 x 2 − 2 x ) = x → ∞ lim ( x \leftroot − 2 \uproot 2 3 1 + x 3 − x \leftroot − 2 \uproot 2 1 − x 2 ) = x → ∞ lim ( x ( 1 + x 1 ) − x ( 1 − x 1 ) ) = 2
u r making it excessively tedious :|
Use y=1/x and L´HOSPITAL rule.
How?Can you elaborate your answer?
Problem Loading...
Note Loading...
Set Loading...
Well this problem becomes very easy if we use (1+x)^ n = 1+nx with x approaches zero
Take x^3 and x^2 common respectively from the two radicals and use above identity to get
x(1+1/x)-x(1-1/x) = 2