Mild Polarizer

Algebra Level 3

What is one of the values of

ln ( 1 + i 3 ) = ? \ln{ (1+i\sqrt { 3 } ) } = \ ?

Details and Assumptions

  • i 2 = 1 i^2 = -1
i ln 2 + π 3 i\ln{ 2 + } \frac { \pi }{ 3 } None Of these choices i π 3 i\frac { \pi }{ 3 } i ln 2 + i π 3 i\ln{ 2 + } i\frac { \pi }{ 3 } ln 2 + i π 3 \ln{ 2 + } i\frac { \pi }{ 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Saurav Pal
Apr 2, 2015

x = log e ( 1 + i 3 ) = log e 2 ( 1 2 + i 3 2 ) = log e 2 + log e ( 1 2 + i 3 2 ) x = log e 2 + log e ( c o s π 3 + i s i n π 3 ) = log e 2 + log e e i π 3 x = log e 2 + i π 3 . x\quad =\log _{ e }{ (1+i\sqrt { 3 } ) } =\log _{ e }{ 2(\frac { 1 }{ 2 } } +i\frac { \sqrt { 3 } }{ 2 } )=\log _{ e }{ 2\quad +\quad } \log _{ e }{ (\frac { 1 }{ 2 } } +i\frac { \sqrt { 3 } }{ 2 } )\\ \Rightarrow \quad x\quad =\quad \log _{ e }{ 2\quad +\quad \log _{ e }{ (cos\cfrac { \pi }{ 3 } +i\quad sin\cfrac { \pi }{ 3 } )\quad =\quad } } \log _{ e }{ 2\quad +\quad \log _{ e }{ { e }^{ i\cfrac { \pi }{ 3 } } } } \\ \Rightarrow \quad x\quad =\quad \log _{ e }{ 2\quad +\quad i\frac { \pi }{ 3 } } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...