Easy nested sequence

Algebra Level 1

3 3 3 3 3 3 = n , n = ? \Large\sqrt[3]{3\sqrt[3]{3\sqrt[3]{3\cdots}}}=\sqrt{n} \quad, \quad n = \ ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Sharky Kesa
Jul 7, 2014

Let 3 3.. 3 3 = x \sqrt [3]{3 \sqrt [3]{3 ..\ldots}} = x . Then x 3 = 3 3 3.. 3 3 x^3 = 3 \sqrt [3]{3 \sqrt [3]{3 ..\ldots}} .

To simplify, we get x 3 = 3 x x^3 = 3x

Upon further simplification, we get:

x 2 = 3 x^2 = 3 or x = 3 x = \sqrt {3} .

Note that we couldn't possibly have a negative answer since we are working with only positive numbers. Also, in x 3 = 3 x x^3 = 3x can not result in x = 0 x = 0 as 0 3 3 0^3 \neq 3 .

A slightly better argument which avoids extraneous roots, is to show that the expression is equal to

3 1 3 + 1 9 + 1 27 + = 3 1 2 3^ { \frac{1}{3} + \frac{ 1}{9} + \frac{ 1 } {27} + \ldots } = 3^ { \frac{1}{2} }

Calvin Lin Staff - 6 years, 11 months ago

You forgot to justify the x = 0 x=0 case (impossible, of course, but should be justified).

mathh mathh - 6 years, 11 months ago

Log in to reply

Root of a number will never be zero so no need of justification

And root of zero is not defined

Sanoop Allaikal - 6 years, 10 months ago

Log in to reply

In x 3 = 3 x x^3=3x , he divided by x x and got x 2 = 3 x^2=3 . But if x = 0 x=0 , then x 2 3 x^2\neq 3 . He didn't check the case when x = 0 x=0 . You had in mind that since it is obvious that x 0 x\neq 0 , it needs no justification, but it cannot be omitted in a rigorous proof - every fact, no matter how obvious, always has to be justified. As for your last point, 0 \sqrt{0} is defined and is equal to 0 0 .

mathh mathh - 6 years, 10 months ago

square root of zero is defined.

Swathi ST - 6 years, 5 months ago
Joram Otero
Jul 9, 2014

First, you cube both sides

[ 3 3 3 3 . . 3 3 ] 3 = ( n ) 3 { \left[ \sqrt [ 3 ]{ 3\cdot \sqrt [ 3 ]{ 3\cdot \sqrt [ 3 ]{ 3\cdot } .. } } \right] }^{ 3 }={ \left( \sqrt { n } \right) }^{ 3 }

We know that 3 3 3 3 . . 3 3 = n \sqrt [ 3 ]{ 3\cdot \sqrt [ 3 ]{ 3\cdot \sqrt [ 3 ]{ 3\cdot } .. } } =\sqrt { n }

You substitute that to your equation and you will get

[ 3 n 3 ] 3 = ( n ) 3 { \left[ \sqrt [ 3 ]{ 3\cdot \sqrt { n } } \right] }^{ 3 }={ \left( \sqrt { n } \right) }^{ 3 }

3 n = n 3 2 3\cdot \sqrt { n } ={ n }^{ \frac { 3 }{ 2 } }

3 = n 3 2 n 1 2 = n 2 2 = n 3=\frac { { n }^{ \frac { 3 }{ 2 } } }{ { n }^{ \frac { 1 }{ 2 } } } ={ n }^{ \frac { 2 }{ 2 } }=n

Therefore
n = 3 n=3

Nice substitution!! :-)

Ojasee Duble - 4 years, 3 months ago

Nice bro!!

jazel libaton - 3 years, 7 months ago
Rakshit Pandey
Jul 31, 2014

I DIDN'T WANT TO JUSTIFY WHY ZERO IS NOT A POSSIBLE SOLUTION, SO I USED LOGARITHM

Given: 3 3 3 3 3 3 \sqrt[3]{3\sqrt[3]{3\sqrt [3]{3\ldots}}} = n \sqrt n
Taking Logarithm on both sides,
log 3 3 3 3 3 3 = log n 1 2 \log \sqrt[3]{3\sqrt[3]{3\sqrt [3]{3\ldots}}}=\log n^{\frac{1}{2}}
1 3 × log 3 3 3 3 3 = 1 2 × log n \Rightarrow \frac{1}{3}\times \log 3\sqrt[3]{3\sqrt [3]{3\ldots}}=\frac{1}{2}\times \log n
log 3 3 3 3 3 = 3 2 × log n \Rightarrow \log 3\sqrt[3]{3\sqrt [3]{3\ldots}}=\frac{3}{2}\times \log n
log 3 + log 3 3 3 3 = 3 2 log n \Rightarrow \log 3 +\log \sqrt[3]{3\sqrt [3]{3\ldots}}=\frac{3}{2}\log n
Replacing 3 3 3 3 \sqrt[3]{3\sqrt [3]{3\ldots}} with n 1 2 n^\frac{1}{2} on L.H.S ,
log 3 + log n 1 2 = 3 2 log n \Rightarrow \log 3 +\log n^\frac{1}{2}=\frac{3}{2}\log n
log 3 + 1 2 log n = 3 2 log n \Rightarrow \log 3 +\frac{1}{2}\log n=\frac{3}{2}\log n
log 3 = 3 1 2 log n \Rightarrow \log 3=\frac{3-1}{2}\log n
log 3 = 2 2 log n \Rightarrow \log 3=\frac{2}{2}\log n
log 3 = log n \Rightarrow \log 3=\log n
3 = n \Rightarrow \boxed{3=n}
So, n = 3 \boxed{n=3}



Well by taking logarithms, you already assumed that it cannot be zero, so, although correct, but you did not avoid the justification.

Yong See Foo - 6 years, 9 months ago
Ashish Kumar
Jul 9, 2014

3^(1/3+1/9+1/27......)=3^(1/3)/(1-1/3)...(using GP Series)=3^1/2

it is 3^(1/3+ 1/9.......................) solving g.p. expression we get 3^0.5 so n=3

We can write the question as 3 n 3 \color{#20A900}{\sqrt[3]{3\sqrt{n}}} because the question is embedded in itself.Raise both sides to the 6th power:

( 3 n 3 ) 6 = ( n ) 6 9 n = n 3 = n 3 9 n = n ( n 2 9 ) = n ( n + 3 ) ( n 3 ) = 0 \color{#D61F06}{(\sqrt[3]{3\sqrt{n}})^6=(\sqrt{n})^6\\9n=n^3\\=n^3-9n=n(n^2-9)=n(n+3)(n-3)=0} Cube root of a positive number is a positive number which eliminates 0 and -3 and leaves n = 3 \color{#3D99F6}{n=\boxed{3}}

9n²≠n³ , 9n=n³

Swagath N Shaji - 5 years, 5 months ago

Log in to reply

@Appu N Shaji Thanks,fixed

Abdur Rehman Zahid - 5 years, 1 month ago
Gandoff Tan
Apr 15, 2019

3 3 3 3 3 3 = n ( 3 n 3 ) 6 = ( n ) 6 9 n = n 3 n 3 9 n = 0 n ( n 3 ) ( n + 3 ) = 0 n = 3 ( n > 0 ) \begin{aligned} \sqrt [ 3 ]{ 3\sqrt [ 3 ]{ 3\sqrt [ 3 ]{ 3\cdots } } } & = & \sqrt { n } \\ { (\sqrt [ 3 ]{ 3\sqrt { n } } ) }^{ 6 } & = & { (\sqrt { n } ) }^{ 6 } \\ 9n & = & { n }^{ 3 } \\ { n }^{ 3 }-9n & = & 0 \\ n(n-3)(n+3) & = & 0 \\ n & = & \boxed { 3 } \quad (n>0) \end{aligned}

Ani B
Jan 7, 2019

We have 3 3 3 3 = n \sqrt[3]{3 \sqrt[3]{3 \ldots}} = \sqrt{n} , so therefore, n = 3 n 3 \sqrt{n}= \sqrt[3]{{3\sqrt{n}}} . Then n n = 3 n n\sqrt{n} = 3\sqrt{n} , and from this, you know n = 3 n = 3 .

Betty BellaItalia
Apr 22, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...