Logarithms of Tangents

Algebra Level 2

log ( tan 1 ) + log ( tan 2 ) + log ( tan 3 ) + + log ( tan 8 9 ) = ? \log(\tan 1^\circ ) + \log (\tan 2^\circ) + \log (\tan 3^\circ) + \ldots + \log (\tan 89^\circ ) = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

First, we gather all the terms into a single logarithm: log ( tan 1 ° ) + log ( tan 2 ° ) + + log ( tan 89 ° ) = log ( tan 1 ° × tan 2 ° × × tan 89 ° ) \log(\tan1°)+\log(\tan2°)+\dots+\log(\tan89°)=\log(\tan1°\times\tan2°\times\dots\times\tan89°)

Then we observe that, because of symmetry of the sine and cosine functions, tan 1 ° = 1 tan 89 ° , tan 2 ° = 1 tan 88 ° \tan1°=\frac{1}{\tan89°}, \tan2°=\frac{1}{\tan88°} and so on.

In this way, we have tan 1 ° × tan 89 ° = tan 2 ° × tan 88 ° = tan 45 ° = 1 \tan1°\times\tan89°=\tan2°\times\tan88°=\tan45°=1 .

Then, we get that: log ( tan 1 ° × tan 2 ° × × tan 89 ° ) = log ( 1 × 1 × × 1 ) = log ( 1 ) = 0 \log(\tan1°\times\tan2°\times\dots\times\tan89°) \\=\log(1\times1\times\dots\times1) \\=\log(1) \\=0

We know that log ( m ) + log ( n ) \log (m) + \log (n) = log ( m n ) \log (mn) and, tan θ = 1 cot θ \tan \theta = \frac {1}{\cot \theta} .

Using the concepts above, it is easy to see that log ( tan ( 1 ) ) + . . . log ( tan ( 89 ) ) \log (\tan (1)) + ... \log (\tan (89)) reduces to tan 45 \tan 45 .

The value of tan 45 \tan 45 is 1 1 and we know that log ( 1 ) \log (1) to the base anything is always 0 0 .

Hence, the answer is 0. 0.

Log1 base 1is not zero

Aditya Mittal - 4 years, 8 months ago
Sohail Khan
Jan 4, 2015

log tan 1 + log tan 2 + log tan 3 + ....................+ log tan 89 = log ( tan 1 x tan 2 x tan 3 x .............. x tan 89) = log { (tan 1 x tan 89) x (tan 2 x tan 88) x ( tan 3 x tan 87) x ................ x (tan 44 x tan 46) x tan 45} = log { ( tan 1 x tan (90 - 1) ) x ( tan 2 x tan ( 90 -2)) x ( tan 3 x tan (90 - 3)) x ............x ( tan 44 x tan (90 - 44)) x tan 45 } = log { (tan 1 x cot 1) x ( tan 2 x cot 2 ) x ( tan 3 x cot 3) x ......x( tan 44 x cot 44 ) x tan 45 } = log { 1 x 1 x 1 x .....................x 1 x tan 45} = log { tan 45} = log 1 = 0

good ..nice explanaion sir

Ravi Purighalla - 5 years, 3 months ago
Oliver Hallam
Jan 9, 2015

We know t a n ( x ) = s i n ( x ) / c o s ( x ) tan(x) = sin(x)/cos(x)

so:

l o g ( t a n ( x ) ) = l o g ( s i n ( x ) ) l o g ( c o s ( x ) ) log(tan(x)) = log(sin(x)) - log(cos(x))

We also know that c o s ( x ) = s i n ( 9 0 x ) cos(x) = sin(90^{\circ} - x) . This means:

l o g ( t a n ( 1 ) ) + . . . + l o g ( t a n ( 8 9 ) ) = l o g ( s i n ( 1 ) ) + . . . + l o g ( s i n ( 8 9 ) ) l o g ( c o s ( 1 ) ) . . . l o g ( c o s ( 8 9 ) = l o g ( s i n ( 1 ) ) + . . . + l o g ( s i n ( 8 9 ) ) l o g ( s i n ( 8 9 ) ) . . . l o g ( s i n ( 1 ) ) = 0 log(tan(1^{\circ})) + ... + log(tan(89^{\circ}))\\ = log(sin(1^{\circ})) + ... + log(sin(89^{\circ})) - log(cos(1^{\circ})) - ... - log(cos(89^{\circ})\\ = log(sin(1^{\circ})) + ... + log(sin(89^{\circ})) - log(sin(89^{\circ})) - ... - log(sin(1^{\circ}))\\ = 0

Vishal S
Jan 5, 2015

log(tan1)+log(tan2)+tan(tan3)+......+log(tan89)=log(tan1.tan2.tan3....tan89)

=log1

=0

Lu Chee Ket
Jan 17, 2015

Applied Excel for both addition and multiplication to confirm.

Log 1 = 0

In fact, (Tan x)(Cot x) = 1 for (Pi/ 2 - x) swap between Sin x and Cos x within the range.

Popular Power
Jun 9, 2019

n = 1 89 log tan n ° = log n = 1 89 tan n ° \displaystyle \sum_{n=1}^{89} \log{\tan{n°}}=\log{\prod_{n=1}^{89} \tan{n°}}

tan 1 ° × tan 89 ° = tan 1 ° cot 1 ° = 1 \tan{1°}\times\tan{89°}=\tan{1°}\cot{1°}=1

Similarly every term cancels out except tan 45 ° = 1 \tan{45°}=1

So, finally: n = 1 89 log tan n ° = log n = 1 89 tan n ° = log 1 = 0 \displaystyle \sum_{n=1}^{89} \log{\tan{n°}}=\log{\prod_{n=1}^{89} \tan{n°}}=\log{1}=0

Huy Phạm
Mar 23, 2017

log(tan1)+log(tan2)+log(tan3)+...+log(tan88)+log(tan89)=(log(tan1)+log(tan89))+(log(tan2)+log(tan88))+...+(log(tan49)+log(tan41)) we have log(a)+log(b)=log(a b)=> log(tan1)+log(tan89)=log(tan1 tan89), we also have tan(1) tan(89)=sin(1) sin(89)/cos(1) cos(89) =(cos(88)-cos(90))/(cos(90)+cos(88))=1 => log(tan1)+log(tan89)=log(tan1 tan89)=log(1)=0 so the total is 0

Terrell Bombb
Nov 7, 2016

tan(1) tan(89) = 1, tan(2) tan(88) = 1, ...

we can simplify to log(1) = 0

Akeel Howell
Jun 10, 2016

The sum: log ( tan 1 ) + log ( tan 2 ) + log ( tan 3 ) + + log ( tan 8 9 ) \log(\tan 1^\circ ) + \log (\tan 2^\circ) + \log (\tan 3^\circ) + \ldots + \log (\tan 89^\circ ) could be expressed as log ( ( tan 1 ) x ( tan 2 ) x ( tan 3 ) x x ( tan 8 9 ) ) \log \bigl((\tan 1^\circ) \mathsf{x} (\tan 2^\circ) \mathsf{x} (\tan 3^\circ) \mathsf{x} \ldots \mathsf{x} (\tan 89^\circ)\bigr) Which is equal to log ( x = 1 89 tan x ) \log\biggl(\displaystyle{\prod\limits_{x=1}^{89}\tan x}\biggr) We can derive that tan 1 x tan 8 9 = tan 2 x tan 8 8 = tan 4 5 = 1 \tan 1^\circ \mathsf{x} \tan 89^\circ = \tan 2^\circ \mathsf{x} \tan 88^\circ = \tan 45^\circ = 1 etc . . So ( x = 1 89 tan x ) = 1 \biggl(\displaystyle{\prod\limits_{x=1}^{89}\tan x}\biggr) = 1 log ( x = 1 89 tan x ) = log 1 = 0 \therefore \log\biggl(\displaystyle{\prod\limits_{x=1}^{89}\tan x}\biggr) = \log 1 = 0

Debojjal Bagchi
Jun 1, 2016

note that tan1.tan2.tan3.............tan89 is 1 since tan1=tan89=cot1 & tanxcotx=1 so tan1.tan2.tan3...........tan89 = tan1.tan89.tan.tan2..........tan44.tan46.tan45=1.1.1.1......tan45 = tan45=1 so log(tan1.tan2.tan3..........tan45)=log(1)=0 (since 10^0=1) so answer is 0

Firstly, let a=log(tan1°)+log(tan2°)+log(tan3°)+..+log(tan89°).

Then from log(x)+log(y)= log(xy), we obtain that

a=log[(tan1°)(tan2°)(tan3°)...(tan89°)].

Also from tan(x-y)=(tanx-tany)/(tanx-tany) and tan(90°)=∞, we can verify that

tan(90°-x)=1/tan(x). Thus, that we get a= log[(tan1°)(tan2°)...(tan44°)(tan45°)tan(90°-46°)...tan(90°-1°)] a=log[(tan1°)(tan2°)(tan3°)...(tan44°)(1)(1/tan44°)...(1/tan3°)(1/tan2°)(1/tan1°)] a=log(1) ∴a=0.

Fox To-ong
Jan 10, 2015

log( tan 45) = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...