Barely Sufficient Equations

Algebra Level 5

x 4 + 6 x 2 + 25 3 x 4 + 4 x 2 + 28 x + 5 \begin{aligned} & x^4 & + 6x^2 + 25 \\ & 3x^4 & + 4x^2 + 28x + 5 \\ \end{aligned}

Let f ( x ) f(x) denote monic quadratic polynomial with integer coefficients. If f ( x ) f(x) are factors of both the two quartic polynomials above, what is the value of f ( 1 ) f(1) ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Choudhary
Mar 29, 2015

x 4 + 6 x 2 + 25 x 4 + 10 x 2 + 25 4 x 2 ( x 2 + 5 ) 2 ( 2 x ) 2 ( x 2 + 2 x + 5 ) ( x 2 2 x + 5 ) \Rightarrow \quad { x }^{ 4 }+6{ x }^{ 2 }+25\\ \Rightarrow \quad { x }^{ 4 }+10{ x }^{ 2 }+25-4{ x }^{ 2 }\\ \Rightarrow \quad { ({ x }^{ 2 }+5) }^{ 2 }-{ (2x) }^{ 2 }\\ \Rightarrow \quad ({ x }^{ 2 }+2x+5)({ x }^{ 2 }-2x+5)\\

Now f ( x ) f\left( x \right) can be any one of the above factors so we have to check for the common factor by dividing it by other polynomial.

Hence, on dividing x 2 2 x + 5 { x }^{ 2 }-2x+5 by 3 x 4 + 4 x 2 + 28 x + 5 3{ x }^{ 4 }+4{ x }^{ 2 }+28x+5 we get remainder 0.

f ( 1 ) = 1 2 + 5 = 4 . \therefore \quad f\left( 1 \right)=1-2+5=\boxed { 4 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...