Easy one!

Algebra Level 2

( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) ( 1 1 999 ) ( 1 1 1000 ) \left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\ldots\left(1-\frac{1}{999}\right)\left(1-\frac{1}{1000}\right)

If the value of the expression above can be expressed as a b \frac ab for coprime positive integers a a and b b , find the value of a + b a+b .


The answer is 1001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) ( 1 1 999 ) ( 1 1 1000 ) \left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\ldots\left(1-\frac{1}{999}\right)\left(1-\frac{1}{1000}\right) = 1 2 × 2 3 × 3 4 × × 998 999 × 999 1000 = \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\ldots\times\frac{998}{999}\times\frac{999}{1000} = 1 1000 =\boxed{\frac{1}{1000}}

Try this

Nihar Mahajan - 5 years, 8 months ago
Mehdi Balti
Oct 8, 2015

So simple just put in 1/n where, n=1000 :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...