Easy one

Algebra Level 3

Let x = 4 ( 5 + 1 ) . ( 5 4 + 1 ) . ( 5 8 + 1 ) . ( 5 16 + 1 ) \large x=\dfrac{4}{(\sqrt{5}+1).(\sqrt[4]{5}+1).(\sqrt[8]{5}+1).(\sqrt[16]{5}+1)} .

find the value of ( x + 1 ) 48 (x+1)^{48}


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Jan 21, 2016

4 ( 5 + 1 ) . ( 5 4 + 1 ) . ( 5 8 + 1 ) . ( 5 16 + 1 ) = 4 ( 5 + 1 ) . ( 5 4 + 1 ) . ( 5 8 + 1 ) . ( 5 16 + 1 ) 5 16 5 16 = 4 ( 5 16 1 ) ( 5 + 1 ) . ( 5 4 + 1 ) . ( 5 8 + 1 ) . ( 5 8 1 ) [ ( a + b ) ( a b ) = a 2 b 2 ] = 4 ( 5 16 1 ) ( 5 + 1 ) . ( 5 4 + 1 ) . ( 5 4 1 ) = 4 ( 5 16 1 ) ( 5 + 1 ) . ( 5 + 1 ) = 4 ( 5 16 1 ) 4 = 5 16 1 x = 5 16 1 x + 1 = 5 16 ( x + 1 ) 48 = 5 48 16 = 5 3 = 125 \dfrac{4}{(\sqrt{5}+1).(\sqrt[4]{5}+1).(\sqrt[8]{5}+1).(\sqrt[16]{5}+1)} = \dfrac{4}{(\sqrt{5}+1).(\sqrt[4]{5}+1).(\sqrt[8]{5}+1).(\sqrt[16]{5}+1)} \cdot \dfrac{\sqrt[16]{5}}{\sqrt[16]{5}} \\ =\dfrac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1).(\sqrt[4]{5}+1).(\sqrt[8]{5}+1).(\sqrt[8]{5}-1)} \quad \quad \quad [\because (\color{#20A900}{a}+\color{#3D99F6}{b})(\color{#20A900}{a}-\color{#3D99F6}{b})=\color{#20A900}{a}^2-\color{#3D99F6}{b}^2] \\ = \dfrac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1).(\sqrt[4]{5}+1).(\sqrt[4]{5}-1)} = \dfrac{4(\sqrt[16]{5}-1)}{(\sqrt{5}+1).(\sqrt{5}+1)} =\dfrac{4(\sqrt[16]{5}-1)}{4} =\sqrt[16]{5}-1 \\ \implies x=\sqrt[16]{5}-1 \therefore x+1=\sqrt[16]{5} \\ \therefore (x+1)^{48}=5^{\frac{48}{16}} =5^3 \\ =\boxed{125}

Abdeslem Smahi
Jan 20, 2016

Let k = 5 16 : k=\sqrt[16]{5}:

so x = 4 ( k 8 + 1 ) ( k 4 + 1 ) ( k 2 + 1 ) ( k + 1 ) x=\frac{4}{(k^8+1)(k^4+1)(k^2+1)(k+1)}

x = 4 k 15 + k 14 + k 13 + k 12 + k 11 + k 10 + k 9 + k 8 + k 7 + k 6 + k 5 + k 4 + k 3 + k 2 + k + 1 x=\frac{4}{k^{15}+k^{14}+k^{13}+k^{12}+k^{11}+k^{10}+k^9+k^8+k^7+k^6+k^5+k^4+k^3+k^2+k+1}

x = 4 ( k 1 ) k 16 1 x=\frac{4(k-1)}{k^{16}-1} replacing k = 5 16 k=\sqrt[16]{5} so: x = 5 16 1 x=\sqrt[16]{5}-1 so: ( x + 1 ) 48 = k 48 = 125. (x+1)^{48}=k^{48}=125.

the question is 1 or 4 in the numerator?

Mateus Gomes - 5 years, 4 months ago

Log in to reply

Sorry it is 4 4

Abdeslem Smahi - 5 years, 4 months ago

I have the same solution :).

Reineir Duran - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...