A calculus problem by rudraksh singh

Calculus Level 3

lim x 0 sin x + ln ( 1 + sin 2 x sin x ) sin 3 x = ? {\large \lim_{x \to 0}} \ \frac {\sin x + \ln \left(\sqrt{1+\sin^2x} - \sin x \right)}{\sin^3 x} = \ ?


The answer is 0.1667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 0 sin x + ln ( 1 + sin 2 x sin x ) sin 3 x Let u = sin x = lim u 0 u + ln ( 1 + u 2 u ) u 3 = lim u 0 u + ln ( ( 1 + u 2 u ) ( 1 + u 2 + u ) 1 + u 2 + u ) u 3 = lim u 0 u + ln ( 1 1 + u 2 + u ) u 3 = lim u 0 u ln ( 1 + u 2 + u ) u 3 By Maclaurin series = lim u 0 u ln ( 1 + u 2 2 u 4 8 + . . . + u ) u 3 = lim u 0 u ln ( 1 + u + u 2 2 . . . ) u 3 By Maclaurin series again = lim u 0 u ( ( u + u 2 2 . . . ) 1 2 ( u + u 2 2 . . . ) 2 + 1 3 ( u + u 2 2 . . . ) 3 . . . ) u 3 = lim u 0 u ( ( u + u 2 2 . . . ) 1 2 ( u 2 + u 3 + . . . ) 2 + 1 3 ( u 3 + . . . ) 3 . . . ) u 3 = lim u 0 1 6 u 3 + O ( u 4 ) u 3 = lim u 0 ( 1 6 + O ( u 4 ) u 3 ) = lim u 0 ( 1 6 + O ( u ) ) = 1 6 0.1667 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin x + \ln \left(\sqrt{1+\sin^2 x}-\sin x\right)}{\sin^3 x} & \small \color{#3D99F6} \text{Let } u = \sin x \\ & = \lim_{u \to 0} \frac {u + \ln \left(\sqrt{1+u^2}-u\right)}{u^3} \\ & = \lim_{u \to 0} \frac {u + \ln \left(\frac {(\sqrt{1+u^2}-u)(\sqrt{1+u^2}+u)}{\sqrt{1+u^2}+u} \right)}{u^3} \\ & = \lim_{u \to 0} \frac {u + \ln \left(\frac 1{\sqrt{1+u^2}+u} \right)}{u^3} \\ & = \lim_{u \to 0} \frac {u - \ln \left({\color{#3D99F6}\sqrt{1+u^2}}+u\right)}{u^3} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{u \to 0} \frac {u - \ln \left({\color{#3D99F6}1+\frac {u^2}2- \frac {u^4}8 + ...} + u \right)}{u^3} \\ & = \lim_{u \to 0} \frac {u - {\color{#3D99F6} \ln \left(1+u+\frac {u^2}2- ... \right)}}{u^3} & \small \color{#3D99F6} \text{By Maclaurin series again} \\ & = \lim_{u \to 0} \frac {u - \color{#3D99F6} \left(\left(u+\frac {u^2}2- ...\right) - \frac 12 \left(u+\frac {u^2}2- ...\right)^2 + \frac 13 \left(u+\frac {u^2}2- ...\right)^3 - ... \right)}{u^3} \\ & = \lim_{u \to 0} \frac {u - \color{#3D99F6} \left(\left(u+\frac {u^2}2- ...\right) - \frac 12 \left(u^2+u^3+ ...\right)^2 + \frac 13 \left(u^3+ ...\right)^3 - ... \right)}{u^3} \\ & =\lim_{u \to 0} \frac {\frac 16 u^3 + O(u^4)}{u^3} =\lim_{u \to 0} \left(\frac 16 + \frac {O(u^4)}{u^3} \right) = \lim_{u \to 0} \left(\frac 16 + O(u) \right) \\ & = \frac 16 \approx \boxed{0.1667} \end{aligned}

When you set tan u = sin x \tan u = \sin x , how do you know that when x 0 x\to 0 , then u 0 u \to 0 as well? Why can't it be u π u \to \pi ?

Pi Han Goh - 3 years, 10 months ago

Log in to reply

Thanks. Yes, the solution does not work.

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

Hint: How about just setting y = sin x y = \sin x ? And rationalize the numerator of the fraction 1 + y 2 y 1 \dfrac{\sqrt{1+y^2} - y}{1} ?

Pi Han Goh - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...