x → 0 lim sin 3 x sin x + ln ( 1 + sin 2 x − sin x ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When you set tan u = sin x , how do you know that when x → 0 , then u → 0 as well? Why can't it be u → π ?
Log in to reply
Thanks. Yes, the solution does not work.
Log in to reply
Hint: How about just setting y = sin x ? And rationalize the numerator of the fraction 1 1 + y 2 − y ?
Problem Loading...
Note Loading...
Set Loading...
L = x → 0 lim sin 3 x sin x + ln ( 1 + sin 2 x − sin x ) = u → 0 lim u 3 u + ln ( 1 + u 2 − u ) = u → 0 lim u 3 u + ln ( 1 + u 2 + u ( 1 + u 2 − u ) ( 1 + u 2 + u ) ) = u → 0 lim u 3 u + ln ( 1 + u 2 + u 1 ) = u → 0 lim u 3 u − ln ( 1 + u 2 + u ) = u → 0 lim u 3 u − ln ( 1 + 2 u 2 − 8 u 4 + . . . + u ) = u → 0 lim u 3 u − ln ( 1 + u + 2 u 2 − . . . ) = u → 0 lim u 3 u − ( ( u + 2 u 2 − . . . ) − 2 1 ( u + 2 u 2 − . . . ) 2 + 3 1 ( u + 2 u 2 − . . . ) 3 − . . . ) = u → 0 lim u 3 u − ( ( u + 2 u 2 − . . . ) − 2 1 ( u 2 + u 3 + . . . ) 2 + 3 1 ( u 3 + . . . ) 3 − . . . ) = u → 0 lim u 3 6 1 u 3 + O ( u 4 ) = u → 0 lim ( 6 1 + u 3 O ( u 4 ) ) = u → 0 lim ( 6 1 + O ( u ) ) = 6 1 ≈ 0 . 1 6 6 7 Let u = sin x By Maclaurin series By Maclaurin series again