1 0 0 ! 1 0 0 2 + k = 1 ∑ 1 0 0 ( k 2 − 3 k + 1 ) ( k − 1 ) ! 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution Sir
k = 1 ∑ 1 0 0 ( k − 1 ) ! k 2 − 3 k + 1 = k = 1 ∑ 1 0 0 ( k − 1 ) ! ( k − 1 ) 2 − k = k = 1 ∑ 1 0 0 ( k − 1 ) ! ( k − 1 ) 2 − ( k ) ! k 2
You can also factorise the quadratic like (k-1)(k-2)-1 this will reduces the whole thing by forming a telescopic series :P Enjoy
Problem Loading...
Note Loading...
Set Loading...
k = 1 ∑ 1 0 0 ( k − 1 ) ! k 2 − 3 k + 1 = k = 1 ∑ 1 0 0 ( k − 1 ) ! ( k − 1 ) 2 − k = k = 1 ∑ 1 0 0 ( ( k − 2 ) ! k − 1 − ( k − 1 ) ! k )
= 0 ! 1 2 − 3 ˙ 1 + 1 + k = 2 ∑ 1 0 0 ( ( k − 2 ) ! k − 1 − ( k − 1 ) ! k )
= − 0 ! 1 + 0 ! 1 − 1 ! 2 + 1 ! 2 − 2 ! 3 + 2 ! 3 − 3 ! 4 + . . . + 9 8 ! 9 9 − 9 9 ! 1 0 0 = − 9 9 ! 1 0 0
Therefore,
1 0 0 ! 1 0 0 2 + k = 1 ∑ 1 0 0 ( k − 1 ) ! k 2 − 3 k + 1 = 1 0 0 ! 1 0 0 2 − 9 9 ! 1 0 0 = 9 9 ! 1 0 0 − 9 9 ! 1 0 0 = 0