Easy one

Calculus Level 4

10 0 2 100 ! + k = 1 100 ( k 2 3 k + 1 ) 1 ( k 1 ) ! = ? \displaystyle \dfrac{100^{2}}{100!} + \sum_{k=1}^{100} ( k^{2} - 3k + 1)\dfrac{1}{(k - 1)!} = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 22, 2014

k = 1 100 k 2 3 k + 1 ( k 1 ) ! = k = 1 100 ( k 1 ) 2 k ( k 1 ) ! = k = 1 100 ( k 1 ( k 2 ) ! k ( k 1 ) ! ) \displaystyle \sum _{k=1} ^{100} {\dfrac {k^2-3k+1} {(k-1)!}} = \sum _{k=1} ^{100} {\dfrac {(k-1)^2-k} {(k-1)!}} = \sum _{k=1} ^{100} {\left( \dfrac {k-1} {(k-2)! } - \dfrac {k}{(k-1)!} \right)}

= 1 2 3 ˙ 1 + 1 0 ! + k = 2 100 ( k 1 ( k 2 ) ! k ( k 1 ) ! ) \displaystyle = \dfrac {1^2-3\dot{}1 +1}{0!} + \sum _{k=2} ^{100} {\left( \dfrac {k-1} {(k-2)! } - \dfrac {k}{(k-1)!} \right)}

= 1 0 ! + 1 0 ! 2 1 ! + 2 1 ! 3 2 ! + 3 2 ! 4 3 ! + . . . + 99 98 ! 100 99 ! = 100 99 ! = - \dfrac {1}{0!} + \dfrac {1}{0!} - \dfrac {2}{1!} + \dfrac {2}{1!} - \dfrac {3}{2!} + \dfrac {3}{2!} - \dfrac {4}{3!} + ... + \dfrac {99}{98!} - \dfrac {100}{99!} = - \dfrac {100}{99!}

Therefore,

10 0 2 100 ! + k = 1 100 k 2 3 k + 1 ( k 1 ) ! = 10 0 2 100 ! 100 99 ! = 100 99 ! 100 99 ! = 0 \displaystyle \dfrac {100^2}{100!} + \sum _{k=1} ^{100} {\dfrac {k^2-3k+1} {(k-1)!}} = \dfrac {100^2}{100!} - \dfrac {100}{99!} = \dfrac {100}{99!} - \dfrac {100}{99!} = \boxed{0}

Nice solution Sir

k = 1 100 k 2 3 k + 1 ( k 1 ) ! = k = 1 100 ( k 1 ) 2 k ( k 1 ) ! = k = 1 100 ( k 1 ) 2 ( k 1 ) ! k 2 ( k ) ! \displaystyle \sum _{k=1} ^{100} {\dfrac {k^2-3k+1} {(k-1)!}} = \sum _{k=1} ^{100} {\dfrac {(k-1)^2-k} {(k-1)!}} = \sum _{k=1} ^{100} \dfrac{(k - 1)^{2}}{(k - 1)!} - \dfrac{k^{2}}{(k)!}

U Z - 6 years, 5 months ago

You can also factorise the quadratic like (k-1)(k-2)-1 this will reduces the whole thing by forming a telescopic series :P Enjoy

akash omble - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...