Componendo dividendo

Algebra Level 2

log y x log x y log y x + log x y = 4 5 \large \frac{ \log_y x - \log_x y }{\log_y x + \log_x y } = \frac 45

Find one of the relationship between x x and y y .

x y = 1 xy=1 x = y x=y x = y 3 x = y^3 x + y = 2 x+y=2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dawar Husain
May 19, 2015

log y x log x y log y x + log x y = 4 5 \frac { \log _{ y }{ x } -\log _{ x }{ y } }{ \log _{ y }{ x } +\log _{ x }{ y } } =\frac { 4 }{ 5 } 1 log x y log x y 1 log x y + log x y = 4 5 \frac { \dfrac { 1 }{ \log _{ x }{ y } } -\log _{ x }{ y } }{ \dfrac { 1 }{ \log _{ x }{ y } } +\log _{ x }{ y } } =\frac { 4 }{ 5 }

Substitute log x y \log_x y with t t

1 t t 1 t + t = 4 5 \dfrac { \dfrac { 1 }{ t } -t }{ \dfrac { 1 }{ t } +t } =\dfrac { 4 }{ 5 }

2 t 2 t = 4 5 \dfrac { \dfrac { 2 }{ t } }{ -2t } =\dfrac { 4 }{ 5 } t = 1 3 t = \dfrac{1}{3}

Now, log x y = 1 3 \log_x y = \dfrac{1}{3}

x 1 3 = y \implies \large{ x^{\frac{1}{3}} = y} or x = y 3 \boxed{\large{x=y^3}}

Moderator note:

There's a slightly simpler approach, see the title!

Here's the starting point.

Let log y x = z \log_y x = z , the equation can be transformed into z 1 / z z + 1 / z = 4 5 \frac{z - 1/z}{z + 1/z} = \frac45 or z 2 1 z 2 + 1 = 9 1 9 + 1 \frac{z^2-1}{z^2+1} = \frac{9-1}{9+1} .

Can you finish it from here?

Hint: Componendo and Dividendo .

Aditya Rathi
May 23, 2015

log y x log x y log y x + log x y = 4 5 a p p l y c o m p o n e n d o d i v i d e n d o log y x log x y + log y x + log x y log y x log x y log y x + log x y = 4 + 5 4 5 2 log y x 2 log x y = 9 1 log y x log x y = 9 log y x = 9 log x y u s e b a s e c h a n g e f o r m u l a a n d c h a n g e b a s e o f a l l l o g s t o 10 log 10 x log 10 y = 9 log 10 y log 10 x u p o n c r o s s m u l t i p l y i n g ( log 10 x ) 2 = 9 ( log 10 y ) 2 t a k e p o s i t i v e s q u a r e r o o t o n b o t h s i d e s log 10 x = 3 log 10 y t a k e p o w e r i n s i d e l o g log 10 x = log 10 y 3 1 = log 10 y 3 log 10 x a g a i n u s e b a s e c h a n g e f o r m u l a 1 = log x y 3 x = y 3 \displaystyle \frac { \log _{ y }{ x } -\log _{ x }{ y } }{ \log _{ y }{ x } +\log _{ x }{ y } } =\frac { 4 }{ 5 } \\ \\ {\text apply\: componendo\: dividendo\\} \displaystyle \frac { \log _{ y }{ x } -\log _{ x }{ y } +\log _{ y }{ x } +\log _{ x }{ y } }{ \log _{ y }{ x } - \displaystyle \log _{ x }{ y } -\log _{ y }{ x } +\log _{ x }{ y } } =\frac { 4+5 }{ 4-5 } \\ \\ \displaystyle \frac { 2\log _{ y }{ x } }{ -2\log _{ x }{ y } } =\frac { 9 }{ -1 } \\ \displaystyle \frac { \log _{ y }{ x } }{ \log _{ x }{ y } } =9\\ \displaystyle \log _{ y }{ x } =9\log _{ x }{ y } \\ \displaystyle use\: base\: change\: formula \:and\: change\: base\: of\: all\: logs\: to\: 10\\ \displaystyle \frac { \log _{ 10 }{ x } }{ \log _{ 10 }{ y } } =9\frac { \log _{ 10 }{ y } }{ \log _{ 10 }{ x } } \\ \displaystyle upon\: cross-multiplying\\ \displaystyle { (\log _{ 10 }{ x } ) }^{ 2 }=9({ \log _{ 10 }{ y } ) }^{ 2 }\\ \displaystyle take\: positive\: square\: root\: on\: both\: sides\\ \displaystyle \log _{ 10 }{ x } =3\log _{ 10 }{ y } \\ \displaystyle take\: power \:inside\: log\\ \displaystyle \log _{ 10 }{ x } =\log _{ 10 }{ { y }^{ 3 } } \\ \displaystyle 1=\frac { \log _{ 10 }{ { y }^{ 3 } } }{ \log _{ 10 }{ x } } \\ \displaystyle again\: use\: base\: change\: formula\\ \displaystyle 1=\log _{ x }{ { y }^{ 3 } } \\ \displaystyle \boxed {x={ y }^{ 3 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...