Minimum of Squares!

Algebra Level 3

If a + b = 1 a n d a , b > 0 \color{#0C6AC7}a + \color{#456461}b = \color{magenta}{1} \quad and \quad \color{#0C6AC7}a , \color{#456461}b > \color{#624F41}0
Then minimum value \text{minimum value} of :

( a + 1 a ) 2 + ( b + 1 b ) 2 ? \left( \color{#0C6AC7}a \color{#EC7300}+ \dfrac{\color{magenta}1}{\color{#0C6AC7}a} \right)^{\color{#D61F06}2 }\color{#3D99F6}+ \left( \color{#456461}b \color{#EC7300}+ \dfrac{\color{magenta}1}{\color{#456461}b} \right)^{\color{#D61F06}2} \geq \ ?


The answer is 12.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hoàn Phạm
Oct 14, 2015

P = ( a + 1 a ) 2 + ( b + 1 b ) 2 = a 2 + b 2 + 1 a 2 + 1 b 2 + 4 = ( a 2 + b 2 ) ( 1 + 1 a 2 b 2 ) + 4 P = \left( a+\dfrac{1}{a}\right)^2 + \left( b+\dfrac{1}{b}\right)^2 = a^2+b^2 + \dfrac{1}{a^2}+\dfrac{1}{b^2} + 4 = \left(a^2+b^2\right)\left(1+\dfrac{1}{a^2 b^2}\right) + 4 We have a 2 + b 2 ( a + b ) 2 2 = 1 2 a^2+b^2 \geq \dfrac{(a+b)^2}{2} = \dfrac{1}{2} and, a b ( a + b 2 ) 2 = 1 4 ab \leq \left(\dfrac{a+b}{2}\right)^2= \dfrac{1}{4} So, P 1 2 ( 1 + 16 ) + 4 = 25 2 P \geq \dfrac{1}{2} \left( 1+ 16\right)+4 = \dfrac{25}{2} IFF a = b = 1 2 a = b = \dfrac{1}{2} the equation happens

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...