Easy or difficult?

Calculus Level 4

d x x 4 + 8 x 3 + 32 x 2 + 64 x + 64 \large \int_{-\infty}^{\infty} \dfrac{dx}{x^4 + 8x^3+ 32x^2 + 64x+ 64}

If the above integral can be represented in the form π A \dfrac {\pi }{A} , find A A .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

d x x 4 + 8 x 3 + 32 x 2 + 64 x + 64 \displaystyle \int _{ -\infty }^{ \infty }{ \frac { dx }{ x^{ 4 }+8x^{ 3 }+32x^{ 2 }+64x+64 } }

= d x x 4 + 8 x 3 + 16 x 2 + 16 x 2 + 64 x + 64 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { dx }{ x^{ 4 }+8x^{ 3 }+16x^{ 2 }+16x^{2}+64x+64 } }

= d x x 2 ( x + 4 ) 2 + 16 ( x + 2 ) 2 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { dx }{ x^{ 2 }\left( x+4 \right)^{2} +16\left( x+2 \right)^{2} } }

Let u = x + 2 \displaystyle u=x+2

= d u ( u 2 ) 2 ( u + 2 ) 2 + 16 ( u ) 2 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { du }{ \left( u-2 \right) ^{ 2 }\left( u+2 \right)^{2} +16\left( u \right)^{2} } }

= d u ( u 2 4 ) 2 + 16 u 2 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { du }{ \left( u^{2}-4 \right)^{2} +16u^{2} } }

= d u u 4 8 u 2 + 16 + 16 u 2 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { du }{ u^{4}-8u^{2}+16 +16u^{2} } }

= d u u 4 + 8 u 2 + 16 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { du }{ u^{4}+8u^{2}+16 } }

= d u ( u 2 + 4 ) 2 \displaystyle =\int _{ -\infty }^{ \infty }{ \frac { du }{\left( u^{2}+4 \right)^{2} } }

Let u = 2 tan θ \displaystyle u=2\tan \theta

= π / 2 π / 2 2 sec 2 θ d θ ( 4 tan 2 θ + 4 ) 2 \displaystyle =\int _{ -\pi/2 }^{ \pi/2 }{ \frac { 2\sec^{2} \theta d\theta }{\left( 4 \tan^{2} \theta+4 \right)^{2} } }

= π / 2 π / 2 2 sec 2 θ d θ 16 sec 4 θ \displaystyle =\int _{ -\pi/2 }^{ \pi/2 }{ \frac { 2\sec^{2} \theta d\theta }{16\sec^{4} \theta } }

= π / 2 π / 2 1 8 cos 2 θ d θ \displaystyle =\int _{ -\pi/2 }^{ \pi/2 }{ \frac { 1 }{8} } \cos^{2} \theta d\theta

= 1 8 π / 2 π / 2 1 + cos 2 θ 2 d θ \displaystyle = \frac { 1 }{8} \int _{ -\pi/2 }^{ \pi/2 }\frac { 1+\cos2\theta }{ 2 } { d\theta }

= 1 8 θ + sin θ cos θ 2 π / 2 π / 2 \displaystyle =\frac { 1 }{ 8 } \frac { \theta +\sin \theta \cos \theta }{ 2 } | \begin{matrix} \pi /2 \\ -\pi /2 \end{matrix}

= 1 8 π 2 = π 16 \displaystyle =\frac { 1 }{ 8 } \frac { \pi }{ 2 } = \boxed{\frac{\pi}{16}}

So

A = 16 \displaystyle A=\boxed{16}

d x x 4 + 8 x 3 + 32 x 2 + 64 x + 64 = 1 ( x 2 + 4 x + 8 ) 2 d x = 1 ( ( x + 2 ) 2 + 4 ) 2 Apply integral substitution: f ( g ( x ) ) g ( x ) = f ( u ) d u u = g ( x ) = 1 8 1 ( v 2 + 1 ) 2 u = 2 v ; d u = 2 d v = 1 8 sec 2 ( w ) ( tan 2 ( w ) + 1 ) 2 d w v = tan ( w ) ; d v = 1 cos 2 ( w ) d w = 1 8 sec 2 ( w ) ( sec 2 ( w ) ) 2 d w = 1 8 1 + cos ( 2 w ) 2 d w = 1 16 1 + cos ( 2 w ) d w = 1 16 ( w + 1 2 sin ( 2 w ) ) = [ 1 16 ( tan 1 ( x + 2 2 ) + 1 2 sin ( 2 tan 1 ( x + 2 2 ) ) ) ] = π 32 ( π 32 ) \begin{aligned} \int_{-\infty}^{\infty} \frac{dx}{x^4+8x^3+32x^2+64x+64} &= \int_{-\infty}^{\infty} \frac{1}{(x^2+4x+8)^2}\,dx \\&= \int_{-\infty}^{\infty} \frac{1}{((x+2)^2+4)^2} \quad\quad\quad\quad\quad\quad\quad\quad{\text{Apply integral substitution: } \int f(g(x)) \cdot g'(x) = \int f(u)\,du \space u = g(x)} \\&= \frac{1}{8} \int_{-\infty}^{\infty} \frac{1}{(v^2+1)^2} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{u = 2v; du=2dv} \\&= \frac{1}{8} \int_{-\infty}^{\infty} \frac{\sec^2(w)}{(\tan^2(w)+1)^2}\,dw \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{v=\tan(w); dv=\frac{1}{\cos^2(w)}dw}\\&= \frac{1}{8} \int_{-\infty}^{\infty} \frac{\sec^2(w)}{(\sec^2(w))^2}\,dw \\&= \frac{1}{8} \int_{-\infty}^{\infty} \frac{1+\cos(2w)}{2}\,dw \\&=\frac{1}{16} \int_{-\infty}^{\infty} 1+\cos(2w)\,dw \\&= \frac{1}{16} \int_{-\infty}^{\infty} \left( w + \frac{1}{2}\sin(2w)\right) \\&=\left[ \frac{1}{16}\left( \tan^{-1}\left( \frac{x+2}{2}\right)+\frac{1}{2}\sin\left(2\tan^{-1} \left( \frac{x+2}{2}\right) \right)\right)\right]_{-\infty}^{\infty} \\&=\frac{\pi}{32} - \left(-\frac{\pi}{32}\right) \space \square \end{aligned}

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...