Easy Peasy

The number of digits in the sum of - 100 + 10 0 2 + 10 0 3 + . . . . . . . . . . 10 0 2011 100+100^2+100^3+..........100^{2011} is

4024 4022 4023 None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chirayu Bhardwaj
Apr 19, 2016

First a fall , we will take an example. Number of digits in 100 + 10 0 2 = 10100 5 \large 100+100^2 = 10100\implies\boxed{5} Which is equal to the number of digits in 10 0 2 = 10000 5 \large100^2 =10000\implies\boxed{5}


So the number of digits in 100 + 10 0 2 + 10 0 3 = 1000000 + 10000 + 100 = 1010100 7 \large100+100^2+100^3=1000000+10000+100=1010100\implies\boxed{7} Which is again equal to the number of digits in 10 0 3 = 1000000 7 \large100^3=1000000\implies\boxed{7}


Therfore we get that the number of digits in ( 10 0 x + 10 0 x 1 + 10 0 x 2 + . . . . . 10 0 2 + 10 0 1 ) (100^x+100^{x-1}+100^{x-2}+.....100^2+100^1) is equal to the number of digits in ( 10 0 x ) (100^x)

\therefore Number of digits in ( 10 0 2011 + 10 0 2010 + . . . . . + 10 0 2 + 100 ) (100^{2011}+100^{2010}+.....+100^2+100) = Number of digits in 10 0 2011 100^{2011} = 4023 \large\color{#3D99F6}{\text{4023}}


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...