Problem #2

Algebra Level 4

What is the minimum value of x 3 + 2 y 3 + 4 z 3 x y z \large\frac{x^{3}+2y^{3}+4z^{3}}{xyz} where x , y , z x, y, z are positive real numbers?

If you don't know where to start you may read up on well-known inequalities.

This problem is part of the set Easy Problems


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S i n c e w e k n o w t h a t x , y a n d z a r p o s i t i v e i n t e g e r s , t h e f i r s t t h i n g t h a t m u s t c o m e t o o u r m i n d i s t h e A M G M i n e q u a l i t y . S o , a p p l y i n g t h e A M G M i n e q u a l i t y f o r x 3 , 2 y 3 , 4 z 3 x 3 + 2 y 3 + 4 z 3 3 ( x 3 . 2 y 3 . 4 z 3 ) 1 3 x 3 + 2 y 3 + 4 z 3 3 ( 8 x 3 y 3 z 3 ) 1 3 x 3 + 2 y 3 + 4 z 3 3 2 x y z x 3 + 2 y 3 + 4 z 3 x y z 6 x 3 + 2 y 3 + 4 z 3 x y z m i n . = 6 Since\quad we\quad know\quad that\quad x,y\quad and\quad z\quad ar\quad positive\quad integers,\quad the\quad \\ first\quad thing\quad that\quad must\quad come\quad to\quad our\quad mind\quad is\quad the\quad AM-GM\\ inequality.\\ So,\quad applying\quad the\quad AM\ge GM\quad inequality\quad for\quad { x }^{ 3 },\quad 2{ y }^{ 3 },\quad 4{ z }^{ 3 }\\ \frac { { x }^{ 3 }+2{ y }^{ 3 }+4{ z }^{ 3 } }{ 3 } \ge { ({ x }^{ 3 }.2{ y }^{ 3 }.4{ z }^{ 3 }) }^{ \frac { 1 }{ 3 } }\\ \\ \frac { { x }^{ 3 }+2{ y }^{ 3 }+4{ z }^{ 3 } }{ 3 } \ge { (8{ x }^{ 3 }{ y }^{ 3 }{ z }^{ 3 }) }^{ \frac { 1 }{ 3 } }\\ \\ \frac { { x }^{ 3 }+2{ y }^{ 3 }+4{ z }^{ 3 } }{ 3 } \ge 2xyz\\ \\ \frac { { x }^{ 3 }+2{ y }^{ 3 }+4{ z }^{ 3 } }{ xyz } \ge 6\\ \\ { \frac { { x }^{ 3 }+2{ y }^{ 3 }+4{ z }^{ 3 } }{ xyz } }_{ min. }=\quad 6

ça ne marche pas toujours.

Omar El Mokhtar - 6 years, 6 months ago

Log in to reply

Que voulez-vous dire?

A Former Brilliant Member - 6 years, 5 months ago

Log in to reply

:o Est-ce-que tu parle le francais????

Krishna Ar - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...