Just The Other Way Of Asking It

Geometry Level 1

The above shows a square A B C D ABCD and a triangle C D E CDE such that A E D = 1 5 \angle AED = 15^\circ and D E = C E DE = CE . Is the triangle C D E CDE equilateral?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jul 14, 2016

Let us assume that C D E \triangle CDE is equilateral, then we check if A E D = 1 5 \angle AED = 15^\circ .

If C D E \triangle CDE is equilateral, then C D E = 6 0 \angle CDE = 60^\circ , D A = D E DA = DE and E A D = A E D \angle EAD = \angle AED . Let A E D = θ \angle AED = \theta . Then, 18 0 A D E = 2 θ 180^\circ - \angle ADE = 2 \theta 18 0 9 0 6 0 = 2 θ \implies 180^\circ - 90^\circ - 60^\circ = 2 \theta 2 θ = 3 0 \implies 2 \theta = 30^\circ θ = A E D = 1 5 \implies \theta = \angle AED = 15^\circ . Therefore, if C D E \triangle CDE is equilateral, A E D = 1 5 \angle AED = 15^\circ and the reverse is also true.

Nice approach! To rigorize the solution, what you did was to create the point E E' such that C D E CDE is equilateral, and then show that E = E E = E' .

Calvin Lin Staff - 4 years, 11 months ago
Hung Woei Neoh
Jul 14, 2016

Proving this is quite tough. This is the only way I found to do so:

Since we know that C E = D E CE=DE , we can draw a straight line E F G EFG which is parallel to A D AD , like this:

Notice that this line is also the symmetry line, line E F G EFG divides the figure in two.

Now, let A D = a A G = a 2 , D E = b , A E = c AD=a\implies AG =\dfrac{a}{2},\;DE=b,\;AE=c . From the properties of parallel lines , we know that D A E = A E G = θ \angle DAE=\angle AEG=\theta

From right-angle A E G \triangle AEG , we know that

sin A E G = A G A E sin θ = a 2 c a = 2 c sin θ \sin \angle AEG = \dfrac{AG}{AE}\\ \sin \theta = \dfrac{\frac{a}{2}}{c}\\ \color{#3D99F6}{a=2c\sin \theta}

From A D E \triangle ADE , we can use the sine rule :

D A sin A E D = D E sin D A E a sin 1 5 = b sin θ b = a sin θ sin 1 5 = 2 c sin θ sin θ sin 1 5 b = 2 c sin 2 θ sin 1 5 \dfrac{DA}{\sin \angle AED}=\dfrac{DE}{\sin \angle DAE}\\ \dfrac{a}{\sin15^{\circ}}=\dfrac{b}{\sin \theta}\\ b=\dfrac{\color{#3D99F6}{a}\sin\theta}{\sin15^{\circ}}=\dfrac{\color{#3D99F6}{2c\sin\theta}\sin\theta}{\sin15^{\circ}}\\ \color{#D61F06}{b=\dfrac{2c\sin^2\theta}{\sin15^{\circ}}}

D E sin D A E = A E sin A D E b sin θ = c sin ( 18 0 1 5 θ ) 2 c sin 2 θ sin θ sin 1 5 sin θ = c sin ( 18 0 ( 1 5 + θ ) ) sin 1 5 = 2 sin θ sin ( 1 5 + θ ) sin 1 5 = cos 1 5 cos ( 1 5 + 2 θ ) cos ( 1 5 + 2 θ ) = cos 1 5 sin 1 5 cos ( 1 5 + 2 θ ) = sin 7 5 sin 1 5 cos ( 1 5 + 2 θ ) = sin ( 4 5 + 3 0 ) sin ( 4 5 3 0 ) cos ( 1 5 + 2 θ ) = 2 cos 4 5 sin 3 0 cos ( 1 5 + 2 θ ) = 2 ( 1 2 ) ( 1 2 ) cos ( 1 5 + 2 θ ) = 1 2 \dfrac{DE}{\sin \angle DAE}=\dfrac{AE}{\sin \angle ADE}\\ \dfrac{\color{#D61F06}{b}}{\sin \theta}=\dfrac{c}{\sin (180^{\circ}-15^{\circ}-\theta)}\\ \color{#D61F06}{\dfrac{2\color{#20A900}{\cancel{\color{#D61F06}{c}}}\color{#20A900}{\cancel{\color{#D61F06}{\sin^2\theta}}\sin\theta}}{\sin15^{\circ}\color{#20A900}{\cancel{\color{#333333}{\sin \theta}}}}}=\dfrac{\color{#20A900}{\cancel{\color{#333333}{c}}}}{\color{#EC7300}{\sin (180^{\circ}-(15^{\circ}+\theta))}}\\ \sin15^{\circ}=\color{magenta}{2\sin\theta\sin(15^{\circ}+\theta)}\\ \sin15^{\circ}=\color{magenta}{\cos15^{\circ}-\cos(15^{\circ}+2\theta)}\\ \cos(15^{\circ}+2\theta)=\color{#69047E}{\cos15^{\circ}}-\sin15^{\circ}\\ \cos(15^{\circ}+2\theta)=\color{#69047E}{\sin75^{\circ}}-\sin15^{\circ}\\ \cos(15^{\circ}+2\theta)=\color{teal}{\sin(45^{\circ}+30^{\circ})-\sin(45^{\circ}-30^{\circ})}\\ \cos(15^{\circ}+2\theta)=\color{teal}{2\cos45^{\circ}\sin30^{\circ}}\\ \cos(15^{\circ}+2\theta)=2\left(\dfrac{1}{\sqrt{2}}\right)\left(\dfrac{1}{2}\right)\\ \cos(15^{\circ}+2\theta)=\dfrac{1}{\sqrt{2}}

Now, we know that

0 < θ < 9 0 0 < 2 θ < 18 0 1 5 < 1 5 + 2 θ < 19 5 0^{\circ}<\theta<90^{\circ}\\ 0^{\circ}<2\theta<180^{\circ}\\ 15^{\circ}<15^{\circ}+2\theta<195^{\circ}

Therefore, we can say that

1 5 + 2 θ = 4 5 θ = 4 5 1 5 2 = 1 5 15^{\circ}+2\theta=45^{\circ} \implies \theta=\dfrac{45^{\circ}-15^{\circ}}{2}=15^{\circ}

D A E = A E D \angle DAE=\angle AED , therefore, A D E \triangle ADE is an isosceles triangle where A D = D E AD=DE

And since A D = D C AD=DC , D E = E C DE=EC , we know that

A D = D C = D E = E C AD=\color{olive}{DC=DE=EC}

From this, we conclude that C D E \triangle CDE is equilateral. The answer is Yes \boxed{\text{Yes}}


Theorems used:

  1. Reference angles: 0 θ 18 0 , sin ( 18 0 θ ) = sin θ 0^{\circ}\leq\theta\leq180^{\circ},\;\color{#EC7300}{\sin(180^{\circ}-\theta)=\sin\theta}
  2. Product to sum trigonometric formula : 2 sin A sin B = cos ( A B ) cos ( A + B ) \color{magenta}{2\sin A\sin B = \cos(A-B)-\cos(A+B)}
  3. Complementary angles : 0 θ 9 0 , cos θ = sin ( 9 0 θ ) 0^{\circ}\leq\theta\leq90^{\circ},\;\color{#69047E}{\cos\theta=\sin(90^{\circ}-\theta)}
  4. Sum to product trigonometric formula : sin ( A + B ) sin ( A B ) = 2 cos A sin B \color{teal}{\sin(A+B)-\sin(A-B)=2\cos A\sin B}

@Rishabh Cool @Ashish Siva @Abhay Kumar @Chew-Seong Cheong I think my solution is too tedious for a Level 1 Geometry question...can you guys come up with a simpler solution?

Hung Woei Neoh - 4 years, 11 months ago

Great solution! Sorry I didn't post any solution here, I just left it. Thanks for posting!

Akira Kato - 4 years, 11 months ago
汶良 林
Nov 13, 2016

Draw FE//AD and AG // DE

Let AF = 1 then GE = 2

∠EAG = 15 °

tan Θ = x , tan 15° = 2 - √3

tan (Θ + 15°) = x + 2 = x + ( 2 3 ) 1 x ( 2 3 ) \frac{x + (2 - √3)}{1- x (2 - √3)}

x + (2 - √3) = x(1- x (2 - √3)) + 2(1- x (2 - √3))

2 x² - √3 x² + 4x - 2√3 x - √3 = 0

(2 - √3) x² + (2 - √3) 2x - √3 = 0

x² + 2x - 3 - 2√3 = 0

x = √3

tan Θ =√3

Θ = 60°

then the triangle CDE is equilateral

Steve Shaff
Nov 12, 2016

Locate F on the E side of line AB such that triangle ABF is equilateral. The locus of all points G that are the vertex of a 15 degree angle AGD is an arc of the circle subtending chord AD in which angle AGD = 15 degrees can be inscribed. Since triangle ADF is isosceles and angle ADF = 150, it follows that F lies on this locus. Since F is equidistant from points C and D, it lies on the perpendicular bisector of segment CD. But point E also lies on the fore-mentioned locus and E is equidistant from points C and D, so F also lies on the perpendicular bisector of segment CD. Since the intersection of the locus arc and the perpendicular bisector of CD is unique on the E side of CD, it follows that E = F. Thus triangle CDE is equilateral.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...