Easy product :)

Algebra Level 3

x = ( 1 1 2 2 ) ( 1 1 3 2 ) . . . ( 1 1 15 2 ) x = (1-\frac { 1 }{ 2^{ 2 } } )(1-\frac { 1 }{ { 3 }^{ 2 } } )\quad ...\quad (1-\frac { 1 }{ { 15 }^{ 2 } } )

If x x can be written as a b \frac{ a}{b} where a a and b b are positive coprime integers, what is the value of a + b a+b ?

12 46 19 23

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Factorise x x as:

x = ( 1 + 1 2 ) ( 1 + 1 3 ) . . . ( 1 + 1 15 ) ( 1 1 2 ) ( 1 1 3 ) . . . ( 1 1 15 ) x = (1+\frac{1}{2})(1+\frac{1}{3})...(1 + \frac{1}{15})\cdot(1-\frac{1}{2})(1-\frac{1}{3})...(1 - \frac{1}{15})

Simplifying each terms and we will get:

x = 3 4 5 . . . 16 2 3 4 5 . . . 15 1 2 3 . . . 14 2 3 4 . . . 15 \Large x = \frac{3 \cdot 4 \cdot 5 \cdot ... \cdot 16}{2 \cdot 3 \cdot 4 \cdot 5 \cdot...\cdot 15} \cdot \frac{1 \cdot 2 \cdot 3 \cdot...\cdot14}{2 \cdot 3 \cdot 4 \cdot...\cdot 15}

Note that the numerator and the denominator will just cancel out.

x = 8 1 15 = 8 15 x = 8 \cdot \frac{1}{15} = \frac{8}{15}

Thus a + b = 23 a + b = \boxed{23}

had done it to 16/30.gave ans 46.all d same it cost me pts.

Chandrachur Banerjee - 7 years ago

Log in to reply

Me too. Forgot to simplify 16/30 into 8/15 :c

Anthony Ng - 6 years, 11 months ago
Cheah Chung Yin
May 31, 2014

Using the identity A 2 B 2 = ( A B ) ( A + B ) A^{2} - B^{2} = (A-B)(A+B) will be a lot easier. You can cancel out the numbers to get the answer easily

i cant get u can u explain??

Saravanan Rajenderan - 7 years ago

yes i did with same process....

Rakesh Kumar - 7 years ago
Rakshit Pandey
Aug 15, 2014

x = ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 1 5 2 ) x= (1- \frac{1}{2^2})(1- \frac{1}{3^2})\ldots (1-\frac{1}{15^2})
x = ( 2 2 1 2 2 ) ( 3 2 1 3 2 ) ( 1 5 2 1 1 5 2 ) \Rightarrow x= (\frac{2^2-1}{2^2}) (\frac{3^2-1}{3^2}) \ldots (\frac{15^2-1}{15^2})
x = ( ( 2 + 1 ) ( 2 1 ) 2 2 ) ( ( 3 + 1 ) ( 3 1 ) 3 2 ) ( ( 15 + 1 ) ( 15 1 ) 1 5 2 ) \Rightarrow x= (\frac{(2+1)(2-1)}{2^2}) (\frac{(3+1)(3-1)}{3^2}) \ldots (\frac{(15+1)(15-1)}{15^2})
x = ( ( 3 × 1 ) ( 4 × 2 ) ( 16 × 14 ) 2 2 3 2 1 5 2 \Rightarrow x= (\frac{(3 \times 1)( 4 \times 2) \ldots (16 \times 14)}{2^2 3^2 \ldots 15^2}
x = ( 1 × 2 × ( 3 2 4 2 1 4 2 ) × 15 × 16 2 2 × ( 3 2 4 2 1 4 2 ) × 1 5 2 \Rightarrow x= (\frac { 1\times 2 \times (3^2 4^2 \ldots 14^2) \times 15 \times 16}{2^2 \times (3^2 4^2 \ldots 14^2) \times 15^2}
x = 1 × 2 × 15 × 16 2 2 × 1 5 2 \Rightarrow x= \frac{1 \times 2 \times 15 \times 16}{2^2 \times 15^2}
x = 8 15 \Rightarrow x= \frac{8}{15}
So, a = 8 a=8 & b = 15 b=15 .
Hence, a + b = 23 a+b=\boxed {23}



Joshua Ong
Jun 16, 2014

As Cheah Chung Yin has said, using the identity A 2 B 2 = ( A B ) ( A + B ) A^2-B^2=(A-B)(A+B) , we can turn the equation into ( 1 2 ( 1 2 ) 2 ) ( 1 2 ( 1 3 ) 2 ) ( 1 2 ( 1 15 ) 2 ) (1^2-(\frac{1}{2})^2)(1^2-(\frac{1}{3})^2)\ldots(1^2-(\frac{1}{15})^2) which equals ( 1 1 2 ) ( 1 + 1 2 ) ( 1 1 3 ) ( 1 + 1 3 ) ( 1 1 2 ) ( 1 + 1 15 ) (1-\frac{1}{2})(1+\frac{1}{2})(1-\frac{1}{3})(1+\frac{1}{3})\ldots(1-\frac{1}{2})(1+\frac{1}{15}) . Regroup to get ( 1 2 ) ( 2 3 ) ( 14 15 ) × ( 3 2 ) ( 4 3 ) ( 16 15 ) (\frac{1}{2})(\frac{2}{3})\ldots(\frac{14}{15})\times(\frac{3}{2})(\frac{4}{3})\ldots(\frac{16}{15}) . Then, everything cancels out and you get 1 15 × 16 2 = 8 15 \frac{1}{15}\times\frac{16}{2}=\frac{8}{15} . Then, adding 8 and 15, we get the final answer of 23 \boxed{23} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...