Let and be the roots of .
Find the smallest positive integral value of which satisfy the above equation.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
using newton's summation we define
s n = a n + b n so S 1 = − 3 S 2 + 3 S 1 + 5 4 = 0 ⟹ S 2 = − 4 5 S 3 + 3 S 2 + 2 7 S 1 = 0 ⟹ S 3 = 2 1 6 S 4 + 3 S 3 + 2 7 S 2 = 0 ⟹ S 4 = 5 6 7 S 5 + 3 S 4 + 2 7 S 3 = 0 ⟹ S 5 = − 7 5 3 3 S 6 + 3 S 5 + 2 7 S 4 = 0 ⟹ S 6 = 7 2 9 0 S 7 + 3 S 6 + 2 7 S 5 = 0 ⟹ S 7 = 1 8 1 5 2 1 which is the required value so n=7