(Easy) Radical Expression

Algebra Level 3

x = 4 ( 3 + 1 ) ( 3 4 + 1 ) ( 3 8 + 1 ) x=\frac{4}{\left(\sqrt{3}+1\right)\left(\sqrt[4]{3}+1\right)\left(\sqrt[8]{3}+1\right)}

Find the value of ( x + 2 ) 8 \left(x+2\right)^8


The answer is 768.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 18, 2019

x = 4 ( 3 + 1 ) ( 3 4 + 1 ) ( 3 8 + 1 ) × 3 8 1 3 8 1 = 4 ( 3 8 1 ) ( 3 + 1 ) ( 3 4 + 1 ) ( 3 4 1 ) = 4 ( 3 8 1 ) ( 3 + 1 ) ( 3 1 ) = 4 ( 3 8 1 ) 3 1 = 2 ( 3 8 1 ) \begin{aligned} x & = \frac 4{(\sqrt 3+1)(\sqrt[4]3+1)(\sqrt[8]3+1)} \color{#3D99F6} \times \frac {\sqrt[8]3-1}{\sqrt[8]3-1} \\ & = \frac {4(\sqrt[8]3-1)}{(\sqrt 3+1)(\sqrt[4]3+1)(\sqrt[4]3-1)} \\ & = \frac {4(\sqrt[8]3-1)}{(\sqrt 3+1)(\sqrt 3-1)} \\ & = \frac {4(\sqrt[8]3-1)}{3-1} \\ & = 2(\sqrt[8]3-1) \end{aligned}

Therefore, ( x + 2 ) 8 = ( 2 ( 3 8 1 ) + 2 ) 8 = 2 8 ( 3 8 ) 8 = 2 8 × 3 = 768 (x+2)^8 = \left(2(\sqrt[8]3-1)+2\right)^8 = 2^8 \left(\sqrt[8]3 \right)^8 = 2^8 \times 3 = \boxed{768} .

Chris Lewis
Jun 18, 2019

Repeatedly factoring using difference of two squares, we have

t 8 1 = ( t 4 1 ) ( t 4 + 1 ) = ( t 2 1 ) ( t 2 + 1 ) ( t 4 + 1 ) = ( t 1 ) ( t + 1 ) ( t 2 + 1 ) ( t 4 + 1 ) t^8-1=\left( t^4-1\right) \left(t^4+1 \right)=\left( t^2-1\right)\left( t^2+1\right)\left( t^4+1\right) =\left(t-1 \right)\left( t+1\right)\left( t^2+1\right)\left( t^4+1\right)

With t = 3 8 t=\sqrt[8]{3} , the expression in the question is

x = 4 ( t + 1 ) ( t 2 + 1 ) ( t 4 + 1 ) = 4 ( t 1 ) t 8 1 = 4 ( 3 8 1 ) 2 = 2 3 8 2 x=\frac{4}{\left(t+1\right)\left( t^2+1\right)\left( t^4+1\right) }\\ =\frac{4(t-1)}{t^8-1}\\ =\frac{4 \left(\sqrt[8]{3}-1 \right)}{2}\\ =2\sqrt[8]{3}-2

Hence ( x + 2 ) 8 = 2 8 3 = 768 (x+2)^8=2^8\cdot 3 = \boxed{768} .

Any tips on formatting the LaTeX above would be appreciated! (In particular, alignment at equals signs and spacing between lines).

Chris Lewis - 1 year, 11 months ago

Log in to reply

Just add \begin{eqnarray} and \end{eqnarray} .

For example: x = 4 ( t + 1 ) ( t 2 + 1 ) ( t 4 + 1 ) = 4 ( t 1 ) t 8 1 = 4 ( 3 8 1 ) 2 = 2 3 8 2 \begin{aligned} x&=&\frac{4}{\left(t+1\right)\left( t^2+1\right)\left( t^4+1\right) }\\ &=&\frac{4(t-1)}{t^8-1}\\ &=&\frac{4 \left(\sqrt[8]{3}-1 \right)}{2}\\ &=&2\sqrt[8]{3}-2 \end{aligned}

Or you might be interested in \begin{array} { l l l } and \end{array}

For example: x = 4 ( t + 1 ) ( t 2 + 1 ) ( t 4 + 1 ) = 4 ( t 1 ) t 8 1 = 4 ( 3 8 1 ) 2 = 2 3 8 2 \begin{array} {lll} x&=&\frac{4}{\left(t+1\right)\left( t^2+1\right)\left( t^4+1\right) }\\ &=&\frac{4(t-1)}{t^8-1}\\ &=&\frac{4 \left(\sqrt[8]{3}-1 \right)}{2}\\ &=&2\sqrt[8]{3}-2 \end{array}

Note that the l l l represents left left left . Feel free to change any of the l s to r (right) or c (center).

Pi Han Goh - 1 year, 11 months ago

Log in to reply

Great, thank you!

Chris Lewis - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...