Easy right?

Geometry Level 3

cos 17 + sin 17 cos 17 sin 17 \frac{\cos 17 + \sin 17}{\cos 17 - \sin 17} = ?

tan 56 \tan 56 tan 38 \tan 38 sin 38 \sin 38 tan 62 \tan 62 tan 73 \tan 73

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 18, 2016

cos 1 7 + sin 1 7 cos 1 7 sin 1 7 = 1 2 cos 1 7 + 1 2 sin 1 7 1 2 cos 1 7 1 2 sin 1 7 = sin 4 5 cos 1 7 + cos 4 5 sin 1 7 cos 4 5 cos 1 7 sin 4 5 sin 1 7 = sin 6 2 cos 6 2 = tan 6 2 \begin{aligned} \frac{\cos 17^\circ + \sin 17^\circ}{\cos 17^\circ - \sin 17^\circ} & = \frac{\frac{1}{\sqrt{2}}\cos 17^\circ + \frac{1}{\sqrt{2}} \sin 17^\circ}{\frac{1}{\sqrt{2}} \cos 17^\circ - \frac{1}{\sqrt{2}} \sin 17^\circ} \\ & = \frac{\sin 45^\circ \cos 17^\circ + \cos 45^\circ \sin 17^\circ}{ \cos 45^\circ \cos 17^\circ -\sin 45^\circ \sin 17^\circ} \\ & = \frac{ \sin 62^\circ}{ \cos 62^\circ} \\ & = \boxed{ \tan 62^\circ} \end{aligned}

Mamunur Rashid
Jan 20, 2016

cos x + sin x cos x sin x = 1 + tan x 1 tan x = tan 45 + tan x 1 tan 45 tan x = tan ( x + 4 5 ) x = 17 tan ( 4 5 + 1 7 ) = tan 62 \begin{gathered} \frac{{\cos x + \sin x}}{{\cos x - \sin x}} = \frac{{1 + \tan x}}{{1 - \tan x}} = \frac{{\tan {{45}^ \circ } + \tan x}}{{1 - \tan {{45}^ \circ }\tan x}} = \tan (x + {45^ \circ }) \\ x = 17 \Rightarrow \tan ({45^ \circ } + {17^ \circ }) = \boxed{\tan {{62}^ \circ }} \\ \end{gathered}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...