Easy Semi-Trigonometric Integral

Calculus Level pending

Calculate

0 π 2 1 + sin x 1 + cos x e x d x \left\lceil\int^\frac{\pi}{2}_0 \frac{1+\sin x}{1+\cos x}\cdot e^x\, dx\right\rceil


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Jan 3, 2014

We appeal to the identity e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) + C \int e^x \cdot \left ( f(x) + f'(x) \right ) dx = e^x \cdot f(x) + C

Consider f ( x ) = sin x 1 + cos x f(x) = \frac { \sin x}{1+\cos x} , then f ( x ) = 1 1 + cos x f'(x) = \frac { 1}{1 + \cos x} , which satisfies the integral

Evaluate: e x sin x 1 + cos x ] 0 π / 2 = e π \large e^x \cdot \frac { \sin x}{1+\cos x} ]_0^{ {\pi /2} } = \sqrt{ e^{ \pi }}

e π = 5 \left \lceil \sqrt{ e^{ \pi }} \right \rceil = \boxed {5}

Jatin Yadav
Jan 6, 2014

We know that:

sin x = 2 tan x 2 1 + tan 2 x 2 \displaystyle \sin x = \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}

cos x = 1 tan 2 x 2 1 + tan 2 x 2 \displaystyle \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1+ \tan^2 \frac{x}{2}} ,

Replace these values to get,

e x ( tan x 2 + 1 2 sec 2 x 2 ) dx = e x tan x 2 \displaystyle \int e^x \bigg(\tan \frac{x}{2} + \frac{1}{2} \sec^2 \frac{x}{2} \bigg) \text{dx} = e^x \tan \frac{x}{2}

Putting limits, we get e π 2 \displaystyle e^{\frac{\pi}{2}} .

Note- I have used:

e x ( f ( x ) + f ( x ) ) dx = e x f ( x ) e x f ( x ) dx + e x f ( x ) dx = e x f ( x ) \displaystyle \int e^x (f(x) + f'(x)) \text{dx} = e^x f(x) - \int e^x f'(x) \text{dx} + \int e^x f'(x) \text{dx} = e^{x} f(x) , using by parts. Here check that f ( x ) = tan x 2 f(x) = \tan \frac{x}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...