Easy start to 2015!

Algebra Level 3

If 1 2 + 0 + 1 + 5 \frac{1}{\sqrt{2} + \sqrt{0} + \sqrt{1} + \sqrt{5}} can be written as x y ( z + 1 ) 2 + 2 \frac{x - \sqrt{y}(z + 1)}{2} + \sqrt{2}

Then find x y + z 2 x - y + {z}^{2}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

1 2 + 0 + 1 + 5 = 1 5 + 2 + 1 = 5 + 2 1 ( 5 + 2 ) 2 1 \dfrac {1}{\sqrt{2}+\sqrt{0} + \sqrt{1}+\sqrt{5} } = \dfrac {1}{\sqrt{5}+\sqrt{2} + 1} = \dfrac {\sqrt{5}+\sqrt{2} - 1}{(\sqrt{5}+\sqrt{2})^2 - 1}

= 5 + 2 1 7 + 2 10 1 = 5 + 2 1 2 10 + 6 = ( 5 + 2 1 ) ( 2 10 6 ) 40 36 = \dfrac {\sqrt{5}+\sqrt{2} - 1}{7+2\sqrt{10} - 1} = \dfrac {\sqrt{5}+\sqrt{2} - 1}{2\sqrt{10}+6} = \dfrac {(\sqrt{5}+\sqrt{2} - 1)(2\sqrt{10}-6)}{40-36}

= 2 50 + 2 20 2 10 6 5 6 2 + 6 4 = \dfrac {2\sqrt{50}+2\sqrt{20} - 2\sqrt{10}-6\sqrt{5}-6\sqrt{2} + 6}{4}

= 50 + 20 10 3 5 3 2 + 3 2 = \dfrac {\sqrt{50}+\sqrt{20} - \sqrt{10}-3\sqrt{5}-3\sqrt{2} + 3}{2}

= 5 2 + 2 5 10 3 5 3 2 + 3 2 = \dfrac {5\sqrt{2}+2\sqrt{5} - \sqrt{10}-3\sqrt{5}-3\sqrt{2}+3}{2}

= 3 + 2 2 5 10 2 = 3 5 ( 2 + 1 ) 2 2 = \dfrac {3+2\sqrt{2}-\sqrt{5} - \sqrt{10}}{2} = \dfrac {3-\sqrt{5}(\sqrt{2}+1)}{2} - \sqrt{2}

x = 3 \Rightarrow x=3 , y = 5 y=5 and z = 2 x y + z 2 = 0 z=\sqrt{2}\quad \Rightarrow x-y+z^2 = \boxed{0}

Aareyan Manzoor
Jan 5, 2015

A = 1 2 + 5 + 1 = 2 5 + 1 ( 2 + 5 + 1 ) ( 2 5 + 1 ) = 2 5 + 1 2 + 2 2 A=\dfrac{1}{\sqrt{2}+\sqrt{5}+1}=\dfrac{\sqrt{2}-\sqrt{5}+1}{(\sqrt{2}+\sqrt{5}+1)(\sqrt{2}-\sqrt{5}+1)}=\dfrac{\sqrt{2}-\sqrt{5}+1}{-2+2\sqrt{2}} A = ( 2 5 + 1 ) ( ( 1 + 2 ) ( 2 + 2 2 ) ( 1 + 2 ) = 2 2 5 + 3 10 2 A=\dfrac{(\sqrt{2}-\sqrt{5}+1)((1+\sqrt{2})}{(-2+2\sqrt{2})(1+\sqrt{2})}=\dfrac{2\sqrt{2}-\sqrt{5}+3-\sqrt{10}}{2} A = 2 2 5 + 3 10 2 2 + 2 A=\dfrac{2\sqrt{2}-\sqrt{5}+3-\sqrt{10}}{2}-\sqrt{2}+\sqrt{2} A = 2 2 5 + 3 10 2 2 2 + 2 A=\dfrac{2\sqrt{2}-\sqrt{5}+3-\sqrt{10}-2\sqrt{2}}{2}+\sqrt{2} A = 3 5 10 2 + 2 A=\dfrac{3-\sqrt{5}-\sqrt{10}}{2}+\sqrt{2} A = 3 5 ( 2 + 1 ) 2 + 2 A=\boxed{\dfrac{3-\sqrt{5}(\sqrt{2}+1)}{2}+\sqrt{2}} and 3 5 + 2 = 0 3-5+2=\boxed{0}

complain= it could have been written as 3 10 ( 1 2 + 1 ) 2 + 2 \dfrac{3-\sqrt{10}(\sqrt{\dfrac{1}{2}}+1)}{2}+\sqrt{2} and many more. please specify @Kartik Sharma

Aareyan Manzoor - 6 years, 5 months ago

Log in to reply

@Kartik Sharma Also remove the "-" sign from "can be written as - ", quite misleading...

Satvik Golechha - 6 years, 5 months ago

But you have forgotten that you should not have a radical sign on the denominator. I was refering to 1 2 \sqrt{\frac{1}{2}} .

Angelo Marco Ramoso - 6 years, 5 months ago
Ronak Agarwal
Jan 4, 2015

So all you wanted is 0 as a answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...