Telescoping Summation problem!

Algebra Level 3

What is n = 2 1 n 2 1 \displaystyle{\sum _{ n=2 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }-1 } }} ?


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tasmeem Reza
Jul 19, 2014

N o t i c e t h a t , 1 n 2 1 = 1 2 × ( 1 n 1 1 n + 1 ) Notice\: that,\: \frac{1}{n^{2}-1}=\frac{1}{2} \times \left ( \frac{1}{n-1}-\frac{1}{n+1} \right )

N o w , Now, n = 2 1 n 2 1 = lim k n = 2 k 1 n 2 1 \sum_{n=2}^{\infty} \frac{1}{n^{2}-1}=\lim_{k \to \infty}\sum_{n=2}^{k}\frac{1}{n^{2}-1} = 1 2 × lim k n = 2 k ( 1 n 1 1 n + 1 ) =\frac{1}{2} \times \lim_{k \to \infty}\sum_{n=2}^{k}\left ( \frac{1}{n-1}-\frac{1}{n+1} \right )

N o w , n o t i c e t h e t e r m , lim k n = 2 k ( 1 n 1 1 n + 1 ) Now,\: notice\: the\: term,\: \lim_{k \to \infty}\sum_{n=2}^{k}\left ( \frac{1}{n-1}-\frac{1}{n+1} \right ) = lim k [ ( 1 1 1 3 ) + ( 1 2 1 4 ) + ( 1 3 1 5 ) + . . . + ( 1 k 2 1 k ) + ( 1 k 1 1 k + 1 ) ] =\lim_{k \to \infty} \left [ \left ( \frac{1}{1}-\frac{1}{3} \right )+\left ( \frac{1}{2}-\frac{1}{4} \right )+\left ( \frac{1}{3}-\frac{1}{5} \right )+...+\left ( \frac{1}{k-2}-\frac{1}{k} \right )+\left ( \frac{1}{k-1}-\frac{1}{k+1} \right ) \right ] = lim k [ 1 1 + 1 2 1 k 1 k + 1 ] [ B e c a u s e e a c h t e r m t e l e s c o p e s w i t h o u t t h e f o l l o w i n g f o u r ] =\lim_{k \to \infty} \left [ \frac{1}{1} + \frac{1}{2} - \frac{1}{k} - \frac{1}{k+1}\right ] \left [ Because\:each\:term\:telescopes\:without\:the\:following\:four \right ] = 1 1 + 1 2 lim k [ 1 k + 1 k + 1 ] =\frac{1}{1} + \frac{1}{2} - \lim_{k \to \infty} \left [ \frac{1}{k} +\frac{1}{k+1}\right ] = 3 2 + 0 =\frac{3}{2}+0

T h u s w e g e t , 1 2 × lim k n = 2 k ( 1 n 1 1 n + 1 ) = 1 2 × 3 2 Thus\: we\: get,\: \frac{1}{2} \times \lim_{k \to \infty}\sum_{n=2}^{k}\left ( \frac{1}{n-1}-\frac{1}{n+1} \right ) = \frac{1}{2} \times \frac{3}{2} = 3 4 =\frac{3}{4} = 0.75 =\boxed{0.75}

cool ! I did the same way

abhijeet banthiya - 6 years, 8 months ago
Chew-Seong Cheong
Nov 30, 2014

Actually the lim k \lim _{k \rightarrow \infty} is unnecessary.

n = 2 1 n 2 1 = 1 2 n = 2 ( 1 n 1 1 n + 1 ) \sum _{n=2} ^{\infty} {\frac {1}{n^2-1} } = \frac {1}{2} \sum _{n=2} ^{\infty} { \left( \frac {1}{n-1} - \frac {1}{n+1} \right)}

= 1 2 ( 1 1 1 3 + 1 2 1 4 + 1 3 1 5 + 1 4 1 6 + 1 5 1 7 + . . . ) = \frac {1}{2} \left( \frac {1}{1} - \frac {1}{3} + \frac {1}{2} - \frac {1}{4} + \frac {1}{3} - \frac {1}{5} + \frac {1}{4} - \frac {1}{6} + \frac {1}{5} - \frac {1}{7} + ... \right)

It can be seen that:

  • the 2 n d 2^{nd} term 1 3 -\frac {1}{3} cancels with 5 t h 5^{th} term + 1 3 +\frac {1}{3}
  • the 4 t h 4^{th} term 1 4 -\frac {1}{4} cancels with 7 t h 7^{th} term + 1 4 +\frac {1}{4}
  • the 6 t h 6^{th} term 1 5 -\frac {1}{5} cancels with 9 t h 9^{th} term + 1 5 +\frac {1}{5}
  • and so on until \infty .

Therefore,

n = 2 1 n 2 1 = 1 2 ( 1 + 1 2 ) = 1 2 × 3 2 = 3 4 = 0.75 \sum _{n=2} ^{\infty} {\frac {1}{n^2-1} } = \frac {1}{2} \left( 1 + \frac {1}{2} \right) = \frac {1}{2} \times \frac {3}{2} = \frac {3}{4} = \boxed {0.75}

i do it exactly the same way as yours :D

Loki Come - 6 years, 6 months ago
Joshua Chin
Nov 8, 2015

Find an expression so that the variables (fractions) will cancel out each other.

n = 2 1 n 2 1 = 1 2 2 1 + 1 3 2 1 + . . . + 1 n 2 1 \sum _{ n=2 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }-1 } } \\ =\frac { 1 }{ { 2 }^{ 2 }-1 } +\frac { 1 }{ { 3 }^{ 2 }-1 } +...+\frac { 1 }{ { n }^{ 2 }-1 }

We find out that

1 2 2 1 = 1 2 ( 1 1 3 ) 1 3 2 1 = 1 2 ( 1 2 1 4 ) 1 4 2 1 = 1 2 ( 1 3 1 5 ) 1 5 2 1 = 1 2 ( 1 4 1 6 ) . . . 1 n 2 1 = 1 2 ( 1 n 1 1 n + 1 ) \frac { 1 }{ { 2 }^{ 2 }-1 } =\frac { 1 }{ 2 } (1-\frac { 1 }{ 3 } )\\ \frac { 1 }{ { 3 }^{ 2 }-1 } =\frac { 1 }{ 2 } (\frac { 1 }{ 2 } -\frac { 1 }{ 4 } )\\ \frac { 1 }{ { 4 }^{ 2 }-1 } =\frac { 1 }{ 2 } (\frac { 1 }{ 3 } -\frac { 1 }{ 5 } )\\ \frac { 1 }{ { 5 }^{ 2 }-1 } =\frac { 1 }{ 2 } (\frac { 1 }{ 4 } -\frac { 1 }{ 6 } )\\ \qquad \qquad ...\\ \frac { 1 }{ { n }^{ 2 }-1 } =\frac { 1 }{ 2 } (\frac { 1 }{ n-1 } -\frac { 1 }{ n+1 } )

And the variables after 1 2 ( 1 ) \frac { 1 }{ 2 } (1)\quad and 1 2 ( 1 3 ) \frac { 1 }{ 2 } (\frac { 1 }{ 3 } ) cancel out each other

Since 1 n + 1 \frac { 1 }{ n+1 } has a negligible value,

n = 2 1 n 2 1 = 1 2 ( 1 + 1 2 ) = 0.75 \sum _{ n=2 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 }-1 } } \\ =\frac { 1 }{ 2 } (1+\frac { 1 }{ 2 } )\\ =0.75

Moderator note:

Yes, that is the idea. It could be expressed in a clearer way by explicitly stating that we have a telescoping sum, or by calculating the partial sums and then finding the limit.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...