What is n = 2 ∑ ∞ n 2 − 1 1 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
cool ! I did the same way
Actually the lim k → ∞ is unnecessary.
n = 2 ∑ ∞ n 2 − 1 1 = 2 1 n = 2 ∑ ∞ ( n − 1 1 − n + 1 1 )
= 2 1 ( 1 1 − 3 1 + 2 1 − 4 1 + 3 1 − 5 1 + 4 1 − 6 1 + 5 1 − 7 1 + . . . )
It can be seen that:
Therefore,
n = 2 ∑ ∞ n 2 − 1 1 = 2 1 ( 1 + 2 1 ) = 2 1 × 2 3 = 4 3 = 0 . 7 5
i do it exactly the same way as yours :D
Find an expression so that the variables (fractions) will cancel out each other.
∑ n = 2 ∞ n 2 − 1 1 = 2 2 − 1 1 + 3 2 − 1 1 + . . . + n 2 − 1 1
We find out that
2 2 − 1 1 = 2 1 ( 1 − 3 1 ) 3 2 − 1 1 = 2 1 ( 2 1 − 4 1 ) 4 2 − 1 1 = 2 1 ( 3 1 − 5 1 ) 5 2 − 1 1 = 2 1 ( 4 1 − 6 1 ) . . . n 2 − 1 1 = 2 1 ( n − 1 1 − n + 1 1 )
And the variables after 2 1 ( 1 ) and 2 1 ( 3 1 ) cancel out each other
Since n + 1 1 has a negligible value,
∑ n = 2 ∞ n 2 − 1 1 = 2 1 ( 1 + 2 1 ) = 0 . 7 5
Yes, that is the idea. It could be expressed in a clearer way by explicitly stating that we have a telescoping sum, or by calculating the partial sums and then finding the limit.
Problem Loading...
Note Loading...
Set Loading...
N o t i c e t h a t , n 2 − 1 1 = 2 1 × ( n − 1 1 − n + 1 1 )
N o w , n = 2 ∑ ∞ n 2 − 1 1 = k → ∞ lim n = 2 ∑ k n 2 − 1 1 = 2 1 × k → ∞ lim n = 2 ∑ k ( n − 1 1 − n + 1 1 )
N o w , n o t i c e t h e t e r m , k → ∞ lim n = 2 ∑ k ( n − 1 1 − n + 1 1 ) = k → ∞ lim [ ( 1 1 − 3 1 ) + ( 2 1 − 4 1 ) + ( 3 1 − 5 1 ) + . . . + ( k − 2 1 − k 1 ) + ( k − 1 1 − k + 1 1 ) ] = k → ∞ lim [ 1 1 + 2 1 − k 1 − k + 1 1 ] [ B e c a u s e e a c h t e r m t e l e s c o p e s w i t h o u t t h e f o l l o w i n g f o u r ] = 1 1 + 2 1 − k → ∞ lim [ k 1 + k + 1 1 ] = 2 3 + 0
T h u s w e g e t , 2 1 × k → ∞ lim n = 2 ∑ k ( n − 1 1 − n + 1 1 ) = 2 1 × 2 3 = 4 3 = 0 . 7 5