Easy Telescoping Factorial Sum

Algebra Level 3

x = 101 ! × ( 1 2 ! + 2 3 ! + 3 4 ! + + 99 100 ! ) x = 101! \times \left(\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} +\cdots+ \frac{99}{100!}\right)

Find 101 ! x . 101! - x .


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If, instead, x = 101 ! ( 1 2 ! + 2 3 ! + 3 4 ! + . . . + 99 100 ! ) = 101 ! A x = 101! * (\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + ... + \frac{99}{100!}) = 101! * A , then we can proceed as follows.

Note that n ( n + 1 ) ! = ( n + 1 ) 1 ( n + 1 ) ! = 1 n ! 1 ( n + 1 ) ! \frac{n}{(n+1)!} = \frac{(n+1) - 1}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!} . Then

A = ( 1 1 ! 1 2 ! ) + ( 1 2 ! 1 3 ! ) + ( 1 3 ! 1 4 ! ) + . . . . . + ( 1 98 ! 1 99 ! ) + ( 1 99 ! 1 100 ! ) = 1 1 100 ! A = (\frac{1}{1!} - \frac{1}{2!}) + (\frac{1}{2!} - \frac{1}{3!}) + (\frac{1}{3!} - \frac{1}{4!}) + ..... + (\frac{1}{98!} - \frac{1}{99!}) + (\frac{1}{99!} - \frac{1}{100!}) = 1 - \frac{1}{100!} ,

since all the 'middle' terms cancel pairwise, (hence the reference to "telescoping" in the title). So we now have

101 ! x = 101 ! 101 ! ( 1 1 100 ! ) = 101 ! 100 ! = 101 101! - x = 101! - 101!*(1 - \frac{1}{100!}) = \frac{101!}{100!} = \boxed{101} .

Great solution! Really clear and concise :)

John Frank - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...