easy trigo

Geometry Level 3

if A and B are two positive acute angles satisfying A-B=15 AND sinA=cos2B then find the value of A+B


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

s i n A = c o s 2 B B u t s i n A = c o s ( 90 A ) S o c o s ( 90 A ) = c o s 2 B U s i n g t h e g e n e r a l f o r m u l a f o r c o s i n e f u n c t i o n , 90 A = 2 n Π ± 2 B B u t s i n c e , A a n d B a r e a c u t e . S o , 90 A = 2 B o r , A + 2 B = 90 > A l s o , A B = 15 2 A 2 B = 30 > A d d i n g & 3 A = 120 A = 40 S o , B = 25 A n d , A + B = 65 sinA=cos{ 2B }\\ But\quad sin{ A }=cos{ ({ 90 }^{ \circ }-A) }\\ So\quad cos({ { 90 }^{ \circ }-A) }=cos{ 2B }\\ Using\quad the\quad general\quad formula\quad for\quad cosine\quad function,\\ { 90 }^{ \circ }-A\quad =\quad 2n\Pi \quad \pm \quad 2B\\ But\quad since,\quad A\quad and\quad B\quad are\quad acute.\quad So,\\ { 90 }^{ \circ }-A\quad =\quad 2B\\ or,\quad A+2B\quad =\quad { 90 }^{ \circ }------->\quad |\\ Also,\quad A-B=15\\ \Rightarrow \quad 2A-2B=30------->\quad \parallel \\ Adding\quad |\quad \& \quad \parallel \\ 3A=120\\ A={ 40 }^{ \circ }\\ So,\quad B={ 25 }^{ \circ }\\ And,\quad A+B={ 65 }^{ \circ }

CHEERS!!:):)

Well.... good and tough!!! :)

Shraman Das - 6 years, 9 months ago

Log in to reply

Do you feel tough then try my new questions Youll enjou

Jai Gupta - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...