If sin θ + sin 2 θ = 1 Then find the value of, cos 1 2 θ + 3 cos 1 0 θ + 3 cos 8 θ + cos 6 θ − 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
didnt get 3rd step of lhs
Log in to reply
same with me
Hope that helped @Amey Khairnar @zMoh w
he took cube common
very good at factoring dude
This one is easy.
It's direct. When you see. two coefficients as 3, check : (a+b)^3. You get (cos^2 theta +cos^4 theta) ^3 - 1 . i.e. sin theta + sin^2 theta - 1 = cipher
yes absolutely right answer.
S i n c e v a l u e i s g i v e n i n t e r m s o f s i n θ I t h o u g h t i t m i g h t b e b e n e f i c i a l t o c o n v e r t t e r m s o f c o s θ i n s i n θ m o r e o v e r i t s a p p a r e n t t h a t i t c a n b e d o n e e a s i l y . A f t e r s u b s t i t u i t i n g ( cos 2 θ = sin θ ) I g o t t h e s e t e r m s : sin 3 θ + sin 6 θ + 3 sin 4 θ + 3 sin 5 θ − 1 W h i c h o n r e a r r a n g i n g g a v e t h e s e : ⇒ sin 3 θ + sin 6 θ + 3 sin 3 θ ( sin 2 θ + sin θ ) − 1 I f i n a l l y s h o t t h e p r o b l e m b y t h i s : ⇒ ( sin θ + sin 2 θ ) 3 − 1 = 0 . .
I didn't factorize all the way...
I took sin( θ ) as X. X+ X 2 =1. After using the quadratic solver, X = [-1 ± 5 ]/2.
Also, sin( θ )+[sin( θ )]^2= cos( θ )+[sin( θ )]^2. sin( θ )+[cos( θ )]^2
The value becomes X^6+3X^5+3X^4+X^3-1=X^3(X+1)^3-1= {[-1 ± 5 ]/2}^3+{[1 ± 5 ]/2}^3-1
After some tiring calculations, I got 1-1=0. Argh... If I had realised...
Problem Loading...
Note Loading...
Set Loading...
Given sin θ = 1 − sin 2 θ = cos 2 θ L.H.S cos 6 θ ( cos 2 θ + 1 ) 3 − 1 = sin 3 θ ( sin θ + 1 ) 3 − 1 = ( sin θ ( sin θ + 1 ) ) 3 − 1 = ( sin 2 θ + sin θ ) 3 − 1 = 1 3 − 1 = 0