A geometry problem by A Former Brilliant Member

Geometry Level pending

Find the value of

4 sin 5 0 3 tan 5 0 \large 4 \sin 50^\circ - \sqrt 3 \tan 50^\circ


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

All angles in the following solution are in degree measure.

4 sin ( 50 ) 3 tan ( 50 ) = 4 sin ( 50 ) cos ( 50 ) 3 sin ( 50 ) cos ( 50 ) = 4\sin(50) - \sqrt{3}\tan(50) = \dfrac{4\sin(50)\cos(50) - \sqrt{3}\sin(50)}{\cos(50)} =

2 sin ( 100 ) 3 sin ( 50 ) cos ( 50 ) = 2 sin ( 80 ) 3 sin ( 50 ) cos ( 50 ) \dfrac{2\sin(100) - \sqrt{3}\sin(50)}{\cos(50)} = \dfrac{2\sin(80) - \sqrt{3}\sin(50)}{\cos(50)} ,

where the identities 2 sin ( x ) cos ( x ) = sin ( 2 x ) 2\sin(x)\cos(x) = \sin(2x) and sin ( x ) = sin ( 180 x ) \sin(x) = \sin(180 - x) were used. Now

sin ( 80 ) = sin ( 30 + 50 ) = sin ( 30 ) cos ( 50 ) + cos ( 30 ) sin ( 50 ) = 1 2 cos ( 50 ) + 3 2 sin ( 50 ) \sin(80) = \sin(30 + 50) = \sin(30)\cos(50) + \cos(30)\sin(50) = \dfrac{1}{2}\cos(50) + \dfrac{\sqrt{3}}{2}\sin(50) ,

and so 2 sin ( 80 ) 3 cos ( 50 ) cos ( 50 ) = ( cos ( 50 ) + 3 sin ( 50 ) ) 3 sin ( 50 ) cos ( 50 ) = 1 \dfrac{2\sin(80) - \sqrt{3}\cos(50)}{\cos(50)} = \dfrac{(\cos(50) + \sqrt{3}\sin(50)) - \sqrt{3}\sin(50)}{\cos(50)} = \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...